Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Upadhyay, M. V. V.

  • Google
  • 1
  • 3
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016A higher order elasto-viscoplastic model using fast Fourier transforms: Effects of lattice curvatures on mechanical response of nanocrystalline metals29citations

Places of action

Chart of shared publication
Lebensohn, R. A. A.
1 / 1 shared
Fressengeas, Claude
1 / 34 shared
Capolungo, L.
1 / 17 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Lebensohn, R. A. A.
  • Fressengeas, Claude
  • Capolungo, L.
OrganizationsLocationPeople

article

A higher order elasto-viscoplastic model using fast Fourier transforms: Effects of lattice curvatures on mechanical response of nanocrystalline metals

  • Lebensohn, R. A. A.
  • Fressengeas, Claude
  • Capolungo, L.
  • Upadhyay, M. V. V.
Abstract

In this work a couple stress continuum based elasto-viscoplastic fast Fourier transform model is developed with the intent to study the role of curvatures-gradient of rotation-on the local meso scale and effective macroscale mechanical response of nanocrystalline materials. Development of this model has led to the formulation of an extended periodic Lippmann Schwinger equation that accounts for couple stress equilibrium. In addition to the standard boundary conditions on strain rate and Cauchy stresses, the model allows imposing non-standard couple stress and curvature rate boundary conditions. Application to representative nanocrystalline microstructures reveals that elastic and plastic curvatures accommodate a part of the local and macroscopic Cauchy stresses. Next, grain boundary interfaces are characterized using curvatures that are representative of their structure and defect content. Depending on the magnitude and distribution of these curvatures, local stresses in the grain boundary neighborhood are generated that activate slip systems besides those fulfilling the Schmid criterion. Generation of both polar dislocations and disclinations as a possible plasticity mechanism in nanocrystalline materials is explored. At the macro scale, this results in a strain rate dependent "softening" or the inverse Hall-Petch effect. The modeling framework naturally captures this grain size effect without any ad hoc assumptions.

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • grain size
  • grain boundary
  • dislocation
  • plasticity
  • nanocrystalline microstructure