People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Penazzi, Luc
IMT Mines Albi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Mechanical characterization and behavior modelling of Ti-6Al-4V alloy in hot forming conditions
- 2019Digital Image Correlation method for monitoring tensile tests at high temperature. Part 1: comparing the speckle quality produced by various methods at high temperature
- 2018A new numerical strategy for SPF pressure profile computing based on statistical strain rate controllingcitations
- 2017Mechanical Behavior And Modelisation Of Ti-6Al-4V Titanium Sheet Under Hot Stamping Conditionscitations
- 2016Hot Forming Process Analysis of Ti6Al-4V Alloy: Experiment, Behaviour Modelling and Finite Element Simulationcitations
- 2016Hot blanking tool wear assessment
- 2016Thermo-Mechanical Modeling of Distortions Promoted during Cooling of Ti-6Al-4V Part Produced by Superplastic Forming
- 2016Superplastic forming optimization technique based on average strain rate controlling – Numerical simulation and experimental validation
- 2015Hot Forming Process Analysis of Ti6Al-4V Alloy: Experiment, Behaviour Modelling and Finite Element Simulationcitations
- 2015Thermo-Mechanical Modeling of Distortions Promoted during Cooling of Ti-6Al-4V Part Produced by Superplastic Forming
- 2013Fatigue analysis-based numerical design of stamping tools made of cast ironcitations
- 2013Fatigue analysis-based numerical design of stamping tools made of cast ironcitations
- 2012Experimental investigation of the tribological behavior and wear mechanisms of tool steel grades in hot stamping of a high-strength boron steelcitations
- 2012Experimental investigation of the tribological behavior and wear mechanisms of tool steel grades in hot stamping of a high-strength boron steelcitations
- 2012Influence of foundry defects and load ratios on the fatigue behavior of cast iron EN-GJS-600
- 2012A methodology and new criteria to quantify the adhesive and abrasive wear damage on a die radius using white light profilometrycitations
- 2012A methodology and new criteria to quantify the adhesive and abrasive wear damage on a die radius using white light profilometrycitations
- 2011A New Method For Advanced Virtual Design Of Stamping Tools For Automotive Industry: Application To Nodular Cast Iron EN‐GJS‐600‐3citations
- 2011A new method for advanced virtual design of stamping tools for automotive industry: application to nodular cast iron EN-GJS-600-3citations
- 2006Cyclic behavior modeling of a tempered martensitic hot work tool steelcitations
- 2005A continuum damage model applied to fatigue lifetime predicition of a martensitic tool steel
- 2005Wear behaviour on the radius portion of a die in deep-drawing: Identification, localisation and evolution of the surface damagecitations
- 2005A continuum damage model applied to high temperature fatigue lifetime prediction of a martensitic tool steelcitations
- 2002Cyclic behaviour modelling of martensitic hot work tool steels
- 2001Thermomechanical fatigue behaviour and life assessment of hot work tool steels
- 2000Life prediction of hot work tool steels subjected to thermomechanical fatigue ; Prédiction de la durée de vie sous sollicitations thermomécaniques des outillages en acier travaillant à chaudcitations
- 2000Life prediction of hot work tool steels subjected to thermomechanical fatiguecitations
Places of action
Organizations | Location | People |
---|
article
Cyclic behavior modeling of a tempered martensitic hot work tool steel
Abstract
International audience ; In this paper, a non unified elasto-viscoplastic behavior model based on internal state variables, is investigated in order to describe the thermo-mechanical stress-strain fatigue response of 55NiCrMoV7 tempered martensitic steels (AISI L6). This model considers a quadratic yield criterion to define the elasticity domain. It allows the determination of two inelastic strain mechanisms resulting from two stress states which can be related to the typical continuous cyclic softening of the tempered martensitic steels. This cyclic softening is reproduced through an isotropic component (drag stress). A memory effect is also introduced to take into account the influence of the plastic strain range on the amount of the cyclic softening. The kinematic component (back stress) of the model allows the description of complex load conditions to which tool steels are subjected. Strain recovery (Baushinger effect), time recovery terms (cyclic behavior including tensile dwell times) and ratcheting effects are considered. The numerical implementation is addressed and two integration methods (explicit and implicit) of the constitutive equations are presented. Moreover, the identification methodology of the model parameters from only two sets of experimental data is presented; the coefficients of the kinematic and isotropic parts are determined successively. The main difficulty consists in reaching a good description both of the cyclic behavior for different strain rates and the ratcheting effect. Last, a validation stage of the three dimensional model is investigated from low cycle fatigue tests performed on different notched specimens.