Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sk, Plontke

  • Google
  • 1
  • 7
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Towards the optimization of drug delivery to the cochlear apex: Influence of polymer and drug selection in biodegradable intracochlear implants.11citations

Places of action

Chart of shared publication
Lehner, E.
1 / 2 shared
Liebau, A.
1 / 2 shared
Mäder, K.
1 / 3 shared
Binder, Wolfgang H.
1 / 12 shared
Honeder, C.
1 / 2 shared
Knolle, W.
1 / 1 shared
Scheffler, Jonas
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lehner, E.
  • Liebau, A.
  • Mäder, K.
  • Binder, Wolfgang H.
  • Honeder, C.
  • Knolle, W.
  • Scheffler, Jonas
OrganizationsLocationPeople

article

Towards the optimization of drug delivery to the cochlear apex: Influence of polymer and drug selection in biodegradable intracochlear implants.

  • Lehner, E.
  • Liebau, A.
  • Mäder, K.
  • Binder, Wolfgang H.
  • Honeder, C.
  • Knolle, W.
  • Sk, Plontke
  • Scheffler, Jonas
Abstract

There is growing need for new drug delivery systems for intracochlear application of drugs to effectively treat inner ear disorders. In this study, we describe the development and characterization of biodegradable, triamcinolone-loaded implants based on poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) respectively, prepared by hot-melt extrusion. PEG 1500 was used as a plasticizer to improve flexibility and accelerate drug release. The sterilization process was performed by electron beam irradiation, resulting in minimal but acceptable polymer degradation for PEG-PLGA implants. The implants have been characterized by texture analysis, differential scanning calorimetry and X-ray powder diffraction. Compared to PLGA implants, PEG-PLGA implants offer similar flexibility but with improved mechanical stability, which will ease the handling and intracochlear application. A controlled release over three months was observed for dexamethasone and triamcinolone extrudates (drug load of 10%) with similar release profiles for both drugs. PEG-PLGA implants showed an initial slow release rate over several days regardless of the amount of PEG added. Mathematical simulations of the pharmacokinetics of the inner ear based on the in vitro release kinetics indicate a complete distribution of triamcinolone in the whole human scala tympani, which underlines the high potential of the developed formulation.

Topics
  • impedance spectroscopy
  • polymer
  • simulation
  • melt
  • texture
  • differential scanning calorimetry
  • melt extrusion