People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michlewska, Sylwia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Ruthenium metallodendrimer against triple-negative breast cancer in micecitations
- 2023Combination of Copper Metallodendrimers with Conventional Antitumor Drugs to Combat Cancer in In Vitro Modelscitations
- 2023Combination of Copper Metallodendrimers with Conventional Antitumor Drugs to Combat Cancer in In Vitro Models
- 2023Lipid-coated ruthenium dendrimer conjugated with doxorubicin in anti-cancer drug delivery: Introducing protocolscitations
- 2023Lipid-coated ruthenium dendrimer conjugated with doxorubicin in anti-cancer drug delivery: Introducing protocolscitations
- 2023Carbosilane ruthenium metallodendrimer as alternative anti-cancer drug carrier in triple negative breast cancer mouse model: A preliminary studycitations
- 2022Heterofunctionalized polyphenolic dendrimers decorated with caffeic acid: Synthesis, characterization and antioxidant activitycitations
- 2021Organometallic dendrimers based on Ruthenium(II) N-heterocyclic carbenes and their implication as delivery systems of anticancer small interfering RNAcitations
- 2020Copper (II) Metallodendrimers Combined with Pro-Apoptotic siRNAs as a Promising Strategy Against Breast Cancer Cellscitations
- 2020Copper (II) metallodendrimers combined with pro- apaoptotic siRNAs as a promising strategy against breast cancer cellscitations
- 2020Measurement methodology toward determination of structure-propertyrelationships in acrylic hydrogels with starch and nanogold designed forbiomedical applicationscitations
- 2019Combination of Ruthenium Dendrimers and Acoustically Propelled Gold Nanowires as a Platform for Active Intracellular Drug Delivery Towards Breast Cancer Therapycitations
- 2019Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drugcitations
- 2019Dendrimer for Templating the Growth of Porous Catechol-Coordinated Titanium Dioxide Frameworks: Toward Hemocompatible Nanomaterialscitations
- 2018Ruthenium dendrimers as carriers for anticancer siRNAcitations
Places of action
Organizations | Location | People |
---|
article
Carbosilane ruthenium metallodendrimer as alternative anti-cancer drug carrier in triple negative breast cancer mouse model: A preliminary study
Abstract
The carbosilane metallodendrimer G1-[[NCPh(o-N)Ru(η6- p-cymene)Cl]Cl]4 (CRD13), based on an arene Ru(II)complex coordinated to imino-pyridine surface groups, has been conjugated with anti-cancer drugs. Rutheniumin the positively-charged dendrimer structure allows this nanoparticle to be considered as an anticancer drugcarrier, made more efficient because ruthenium has anticancer properties. The ability of CRD13 to form complexes with Doxorubicin (DOX), 5-Fluorouracil (5-Fu), and Methotrexate (MTX) has been evaluated using zetapotential measurement, transmission electron microscopy (TEM) and computer simulation. The results show thatit forms stable nanocomplexes with all those drugs, enhancing their effectiveness against MDA-MB-231 cancercells. In vivo tests indicate that the CRD13/DOX system caused a decrease of tumor weight in mice with triplenegative breast cancer. However, the tumors were most visibly reduced when naked dendrimers were injected.