Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alkahtani, Manal

  • Google
  • 1
  • 7
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Machine learning using multi-modal data predicts the production of selective laser sintered 3D printed drug products50citations

Places of action

Chart of shared publication
Ji, Mengxuan
1 / 1 shared
Orlu, Mine
1 / 2 shared
Gaisford, Simon
1 / 12 shared
Basit, Abdul W.
1 / 10 shared
Elbadawi, Moe
1 / 4 shared
Awad, Atheer
1 / 5 shared
Abdalla, Youssef
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ji, Mengxuan
  • Orlu, Mine
  • Gaisford, Simon
  • Basit, Abdul W.
  • Elbadawi, Moe
  • Awad, Atheer
  • Abdalla, Youssef
OrganizationsLocationPeople

article

Machine learning using multi-modal data predicts the production of selective laser sintered 3D printed drug products

  • Alkahtani, Manal
  • Ji, Mengxuan
  • Orlu, Mine
  • Gaisford, Simon
  • Basit, Abdul W.
  • Elbadawi, Moe
  • Awad, Atheer
  • Abdalla, Youssef
Abstract

Three-dimensional (3D) printing is drastically redefining medicine production, offering digital precision and personalized design opportunities. One emerging 3D printing technology is selective laser sintering (SLS), which is garnering attention for its high precision, and compatibility with a wide range of pharmaceutical materials, including low-solubility compounds. However, the full potential of SLS for medicines is yet to be realized, requiring expertise and considerable time-consuming and resource-intensive trial-and-error research. Machine learning (ML), a subset of artificial intelligence, is an in silico tool that is accomplishing remarkable breakthroughs in several sectors for its ability to make highly accurate predictions. Therefore, the present study harnessed ML to predict the printability of SLS formulations. Using a dataset of 170 formulations from 78 materials, ML models were developed from inputs that included the formulation composition and characterization data retrieved from Fourier-transformed infrared spectroscopy (FT-IR), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Multiple ML models were explored, including supervised and unsupervised approaches. The results revealed that ML can achieve high accuracies, by using the formulation composition leading to a maximum F1 score of 81.9%. Using the FT-IR, XRPD and DSC data as inputs resulted in an F1 score of 84.2%, 81.3%, and 80.1%, respectively. A subsequent ML pipeline was built to combine the predictions from FT-IR, XRPD and DSC into one consensus model, where the F1 score was found to further increase to 88.9%. Therefore, it was determined for the first time that ML predictions of 3D printability benefit from multi-modal data, combining numeric, spectral, thermogram and diffraction data. The study lays the groundwork for leveraging existing characterization data for developing high-performing computational models to accelerate formulation development.

Topics
  • impedance spectroscopy
  • compound
  • differential scanning calorimetry
  • sintering
  • laser sintering
  • machine learning
  • infrared spectroscopy
  • static light scattering