Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tho, Ingunn

  • Google
  • 10
  • 29
  • 247

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023Impact of Drug Load and Polymer Molecular Weight on the 3D Microstructure of Printed Tablets ; ENEngelskEnglishImpact of Drug Load and Polymer Molecular Weight on the 3D Microstructure of Printed Tablets9citations
  • 2023Co-administration of Intravenous Drugs3citations
  • 2023Impact of Drug Load and Polymer Molecular Weight on the 3D Microstructure of Printed Tablets9citations
  • 2022A new method to determine drug-polymer solubility through enthalpy of melting and mixing ; ENEngelskEnglishA new method to determine drug-polymer solubility through enthalpy of melting and mixing3citations
  • 2022A new method to determine drug-polymer solubility through enthalpy of melting and mixing3citations
  • 2021Influence of Drug Load on the Printability and Solid-State Properties of 3D-Printed Naproxen-Based Amorphous Solid Dispersion21citations
  • 2020Functionalised calcium carbonate as a coformer to stabilize amorphous drugs by mechanochemical activation10citations
  • 2019Mucoadhesive buccal films based on a graft co-polymer – A mucin-retentive hydrogel scaffold79citations
  • 2015Chitosan in Mucoadhesive Drug Delivery: Focus on Local Vaginal Therapy55citations
  • 2015Chitosan in Mucoadhesive Drug Delivery : Focus on Local Vaginal Therapy55citations

Places of action

Chart of shared publication
Parreiras Nogueira, Liebert
2 / 5 shared
Genina, Natalja
2 / 8 shared
Larsen, Bjarke Strøm
5 / 5 shared
Kissi, Eric Ofosu
4 / 8 shared
Nilsson, Niklas
1 / 1 shared
Nezvalova-Henriksen, Katerina
1 / 1 shared
Rantanen, Jukka
1 / 43 shared
Andersen, Niels Højmark
1 / 1 shared
Brustugun, Jørgen
1 / 1 shared
Bøtker, Johan Peter
1 / 9 shared
Knopp, Matthias Manne
2 / 10 shared
Rades, Thomas
3 / 107 shared
Meiland, Peter
2 / 2 shared
Nilsson, Robin
1 / 1 shared
Larsson, Anette
1 / 6 shared
Nogueira, Liebert Parreiras
1 / 4 shared
Liu, Jingwen
1 / 5 shared
Almeida, Andreia F.
1 / 1 shared
Hellfritzsch, Marie
1 / 1 shared
Scherließ, Regina
1 / 2 shared
Sarmento, Bruno
1 / 9 shared
Alopaeus, Julia Fredrika
1 / 1 shared
Skalko-Basnet, Natasa
3 / 5 shared
Gutowski, Tobias
1 / 1 shared
Mattsson, Sofia
2 / 2 shared
Bleher, Stefan
2 / 2 shared
Andersen, Toril
2 / 2 shared
Flaten, Gøril Eide
1 / 2 shared
Flaten, Goril Eide
1 / 1 shared
Chart of publication period
2023
2022
2021
2020
2019
2015

Co-Authors (by relevance)

  • Parreiras Nogueira, Liebert
  • Genina, Natalja
  • Larsen, Bjarke Strøm
  • Kissi, Eric Ofosu
  • Nilsson, Niklas
  • Nezvalova-Henriksen, Katerina
  • Rantanen, Jukka
  • Andersen, Niels Højmark
  • Brustugun, Jørgen
  • Bøtker, Johan Peter
  • Knopp, Matthias Manne
  • Rades, Thomas
  • Meiland, Peter
  • Nilsson, Robin
  • Larsson, Anette
  • Nogueira, Liebert Parreiras
  • Liu, Jingwen
  • Almeida, Andreia F.
  • Hellfritzsch, Marie
  • Scherließ, Regina
  • Sarmento, Bruno
  • Alopaeus, Julia Fredrika
  • Skalko-Basnet, Natasa
  • Gutowski, Tobias
  • Mattsson, Sofia
  • Bleher, Stefan
  • Andersen, Toril
  • Flaten, Gøril Eide
  • Flaten, Goril Eide
OrganizationsLocationPeople

article

A new method to determine drug-polymer solubility through enthalpy of melting and mixing

  • Knopp, Matthias Manne
  • Rades, Thomas
  • Tho, Ingunn
  • Meiland, Peter
  • Larsen, Bjarke Strøm
Abstract

<p>In this study, a new method to determine the solubility of crystalline drugs in (amorphous) polymers is proposed. The method utilizes annealing of supersaturated amorphous solid dispersions to achieve equilibrium between dissolved and recrystallized drug. By measuring the enthalpy of melting and mixing (H<sub>m+mix</sub>) of the recrystallized drug, the equilibrium solubility of the drug in the polymer at the annealing temperature is determined. The equilibrium solubilities at these elevated temperatures were used to extrapolate to room temperature using the Flory-Huggins model. The new H<sub>m+mix</sub> method showed solubility predictions in line with the melting point depression (MPD) and recrystallization (RC) methods for indomethacin (IMC) -polyvinylpyrrolidone (PVP). For IMC-hydroxypropyl methylcellulose (HPMC), the MPD method plateaued rapidly, leaving only one usable data point. The RC method showed large variations in the solubility predictions possibly due to a narrow glass transition temperature (T<sub>g</sub>) window or inaccurate T<sub>g</sub> determination. In contrast, the new H<sub>m+mix</sub> method showed robust solubility prediction over the entire annealing temperature range with low variation and narrow error margins after extrapolation for both drug-polymer systems. The new H<sub>m+mix</sub> method was able to accurately determine the drug-polymer solubility of IMC-HPMC, showing promise as a new tool to determine the solubility of problematic drug-polymer systems.</p>

Topics
  • impedance spectroscopy
  • dispersion
  • polymer
  • amorphous
  • glass
  • glass
  • glass transition temperature
  • annealing
  • recrystallization