Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mathew, Essyrose

  • Google
  • 3
  • 8
  • 81

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 20223D bioprinted scaffolds for diabetic wound healing applications44citations
  • 2022Stereolithography 3D printed implants: a preliminary investigation as potential local drug delivery systems to the ear30citations
  • 2022Fused deposition modeling 3D printing proof of concept study for personalised inner ear therapy7citations

Places of action

Chart of shared publication
Lamprou, Dimitrios A.
3 / 22 shared
Magee, Erin
1 / 1 shared
Glover, Katie
1 / 1 shared
Pitzanti, Giulia
2 / 3 shared
Dorati, Rossella
1 / 5 shared
Triacca, Alessandro
1 / 1 shared
Conti, Bice
1 / 6 shared
Haddow, Oisin
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Lamprou, Dimitrios A.
  • Magee, Erin
  • Glover, Katie
  • Pitzanti, Giulia
  • Dorati, Rossella
  • Triacca, Alessandro
  • Conti, Bice
  • Haddow, Oisin
OrganizationsLocationPeople

article

Stereolithography 3D printed implants: a preliminary investigation as potential local drug delivery systems to the ear

  • Dorati, Rossella
  • Mathew, Essyrose
  • Triacca, Alessandro
  • Lamprou, Dimitrios A.
  • Conti, Bice
  • Pitzanti, Giulia
Abstract

The current study is a preliminary investigation on the use of stereolithography 3D printing technology in the field of personalized medicines and specifically for delivering drugs locally, which can for example usefully be applied to ear infections. The main aim is the development of drug-loaded implants for the treatment of ear diseases, to improve patient compliance and to overcome the limitations of current delivery approaches. Multiple prototypes of implant geometries have been created and printed using a flexible resin containing 0.5% w/v of Levofloxacin. Physicochemical characterization of the printed implants was carried out using a variety of techniques (e.g., microscopic, spectroscopic, and mechanical analysis). Finally, preliminary in vitro tests were performed to evaluate the release profile of Levofloxacin, the prototype implant's stability, and their antimicrobial property. The results obtained show that there is no interaction between the resin and the drug, which is perfectly solubilized in the device. In addition, the results of the mechanical tests show that the material used resists compression without compromising the design itself, and the diffusion test has shown that the drug diffused through the matrix prototype at 50% over 3 weeks. The selected designs showed higher antimicrobial activity on E.coli than on S.aureus.

Topics
  • impedance spectroscopy
  • resin