Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ra, Depaz

  • Google
  • 3
  • 9
  • 131

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Development of a stable lyophilized adeno-associated virus gene therapy formulation.15citations
  • 2016Freeze-Drying Above the Glass Transition Temperature in Amorphous Protein Formulations While Maintaining Product Quality and Improving Process Efficiency.78citations
  • 2014Cross-linked silicone coating: a novel prefilled syringe technology that reduces subvisible particles and maintains compatibility with biologics.38citations

Places of action

Chart of shared publication
Yz, Zhang
1 / 1 shared
Marshall, T.
1 / 1 shared
Js, Bee
1 / 1 shared
Pansare, S.
1 / 1 shared
Sm, Patel
1 / 1 shared
Jouffray, S.
1 / 1 shared
Chevolleau, T.
1 / 4 shared
Mn, Dimitrova
1 / 1 shared
Narwal, R.
1 / 1 shared
Chart of publication period
2021
2016
2014

Co-Authors (by relevance)

  • Yz, Zhang
  • Marshall, T.
  • Js, Bee
  • Pansare, S.
  • Sm, Patel
  • Jouffray, S.
  • Chevolleau, T.
  • Mn, Dimitrova
  • Narwal, R.
OrganizationsLocationPeople

article

Development of a stable lyophilized adeno-associated virus gene therapy formulation.

  • Yz, Zhang
  • Marshall, T.
  • Ra, Depaz
  • Js, Bee
Abstract

Adeno-associated viruses (AAV) are among the most actively investigated vectors for gene therapy. Supply of early clinical studies with frozen drug product (DP) can accelerate timelines and minimize degradation risks. In the long-term, logistical challenges of frozen DP may limit patient access. In this work, we developed a lyophilized (freeze-dried) formulation of AAV. The mass concentration of AAV is typically low, and AAV also requires a minimum ionic strength to inhibit aggregation. These factors result in a low collapse temperature, which is limiting to lyophilization. Mannitol crystallization was found to cause extensive degradation and potency loss of AAV during the freezing step. With further development, we determined that AAV could be lyophilized in a sucrose and citrate formulation with a more desirable high glass transition temperature of the dried cake. An optimal residual moisture range (1-3%) was found to be critical to maintaining AAV8 stability. Glycerol was found to protect AAV8 from over-drying by preventing capsid damage and genome DNA release. A lyophilized formulation was identified that maintained potency for 24 months at 2-8 °C, indicating the feasibility of a dried formulation for AAV gene therapy.

Topics
  • impedance spectroscopy
  • glass
  • glass
  • strength
  • glass transition temperature
  • crystallization
  • drying