People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lipiäinen, Tiina
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2020Effect of trehalose and melibiose on crystallization of amorphous paracetamolcitations
- 2019Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Filmscitations
- 2018Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Filmscitations
- 2018Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Filmscitations
- 2018Comparison of melibiose and trehalose as stabilising excipients for spray-dried beta-galactosidase formulationscitations
Places of action
Organizations | Location | People |
---|
article
Effect of trehalose and melibiose on crystallization of amorphous paracetamol
Abstract
<p>This paper investigates the solid-state behavior of two-phase solid dispersions involving small molecules. The effect of two sugars, trehalose and melibiose, on the recrystallization of amorphous paracetamol, and vice versa, was investigated. The solid dispersions were prepared via heating and quench-cooling, and then stored at a temperature of 38.5 +/- 0.5 degrees C and relative humidities of 3 +/- 1% and 75 +/- 1%. X-ray powder diffraction (XRPD) confirmed that the solid dispersions were amorphous, while Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) revealed that the solid dispersions were two-phase systems with drugrich and excipient-rich regions. XRPD was used to qualitatively and quantitatively study the crystallization of the components, and revealed that, despite the existence of two phases, the sugars hindered the crystallization of paracetamol. In contrast, once the paracetamol crystallization started, it accelerated the crystallization of the sugars. Overall, the study demonstrates that small-molecule solid-dispersions need not be single-phase to observe mutual influences between the components in crystallization behavior, and that these effects are likely mediated through interactions at the phase interfaces, as well as alterations in water sorption and mechanical effects.</p>