People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Goyanes, Alvaro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Electrophotographic 3D printing of pharmaceutical films
- 2022Prediction of Solid-State Form of SLS 3D Printed Medicines Using NIR and Raman Spectroscopy
- 2020Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetroncitations
- 20203D printingcitations
- 20203D printed opioid medicines with alcohol-resistant and abuse-deterrent propertiescitations
- 2019Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process.citations
- 2019Track-and-trace: Novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks.citations
- 20193D Printed Pellets (Miniprintlets): A Novel, Multi-Drug, Controlled Release Platform Technologycitations
- 20183D printing of drug-loaded gyroid lattices using selective laser sinteringcitations
Places of action
Organizations | Location | People |
---|
article
3D printing of drug-loaded gyroid lattices using selective laser sintering
Abstract
Three-dimensional printing (3DP) is gaining momentum in the field of pharmaceuticals, offering innovative opportunities for medicine manufacture. Selective laser sintering (SLS) is a novel, high resolution and single-step printing technology that we have recently introduced to the pharmaceutical sciences. The aim of this work was to use SLS 3DP to fabricate printlets (3D printed tablets) with cylindrical, gyroid lattice and bi-layer structures having customisable release characteristics. Paracetamol-loaded constructs from four different pharmaceutical grade polymers including polyethylene oxide, Eudragit (L100-55 and RL) and ethyl cellulose, were created using SLS 3DP. The novel gyroid lattice structure was able to modulate the drug release from all four polymers. This work is the first to demonstrate the feasibility of using SLS to achieve customised drug release properties of several polymers, in a swift, cost-effective manner, avoiding the need to alter the formulation composition. By creating these constructs, it is therefore possible to modify drug release, which in practice, could enable the tailoring of drug performance to the patient simply by changing the 3D design.