Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rask, Malte Bille

  • Google
  • 1
  • 4
  • 62

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Comparison of two DSC-based methods to predict drug-polymer solubility62citations

Places of action

Chart of shared publication
Knopp, Matthias Manne
1 / 10 shared
Rades, Thomas
1 / 107 shared
Holm, René
1 / 17 shared
Olesen, Niels Erik
1 / 2 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Knopp, Matthias Manne
  • Rades, Thomas
  • Holm, René
  • Olesen, Niels Erik
OrganizationsLocationPeople

article

Comparison of two DSC-based methods to predict drug-polymer solubility

  • Knopp, Matthias Manne
  • Rades, Thomas
  • Holm, René
  • Olesen, Niels Erik
  • Rask, Malte Bille
Abstract

<p>The aim of the present study was to compare two DSC-based methods to predict drug-polymer solubility (melting point depression method and recrystallization method) and propose a guideline for selecting the most suitable method based on physicochemical properties of both the drug and the polymer. Using the two methods, the solubilities of celecoxib, indomethacin, carbamazepine, and ritonavir in polyvinylpyrrolidone, hydroxypropyl methylcellulose, and Soluplus® were determined at elevated temperatures and extrapolated to room temperature using the Flory-Huggins model. For the melting point depression method, it was observed that a well-defined drug melting point was required in order to predict drug-polymer solubility, since the method is based on the depression of the melting point as a function of polymer content. In contrast to previous findings, it was possible to measure melting point depression up to 20 °C below the glass transition temperature (T<sub>g</sub>) of the polymer for some systems. Nevertheless, in general it was possible to obtain solubility measurements at lower temperatures using polymers with a low T<sub>g</sub>. Finally, for the recrystallization method it was found that the experimental composition dependence of the T<sub>g</sub> must be differentiable for compositions ranging from 50 to 90% drug (w/w) so that one T<sub>g</sub> corresponds to only one composition. Based on these findings, a guideline for selecting the most suitable thermal method to predict drug-polymer solubility based on the physicochemical properties of the drug and polymer is suggested in the form of a decision tree.</p>

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • glass transition temperature
  • differential scanning calorimetry
  • recrystallization