People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hirvonen, Jouni Tapio
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol sebacate)/Nanoparticle-Based Composite Patch for Myocardial Infarction Applicationscitations
- 2020Multifunctional 3D-printed patches for long-term drug release therapies after myocardial infarctioncitations
- 2018Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regenerationcitations
- 2017Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitationcitations
- 2017Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabricationcitations
- 2016Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal modelcitations
- 2015Microfluidic Nanoprecipitation of a Stimuli Responsive Hybrid Nanocomposite for Antitumoral Applications
Places of action
Organizations | Location | People |
---|
article
Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration
Abstract
<p>Bone tissue engineering is considered an alternative approach for conventional strategies available to treat bone defects. In this study, we have developed bone scaffolds composed of hydroxyapaptite (HAp), gelatin and mesoporous silica, all recognized as promising materials in bone tissue engineering due to favorable biocompatibility, osteoconductivity and drug delivery potential, respectively. These materials were coupled with conductive polypyrrole (PPy) polymer to create a novel bone scaffold for regenerative medicine. Conductive and non-conductive scaffolds were made by slurry casting method and loaded with a model antibiotic, vancomycin (VCM). Their properties were compared in different experiments in which scaffolds containing PPy showed good mechanical properties, higher protein adsorption and higher percentage of VCM release over a long duration of time compared to non-conductive scaffolds. Osteoblast cells were perfectly immersed into the gelatin matrix and remained viable for 14 days. Overall, new conductive composite bone scaffolds were created and the obtained results strongly verified the applicability of this conductive scaffold in drug delivery, encouraging its further development in tissue engineering applications.</p>