People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holm, René
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Impact of drug compounds mechanical/deformation properties on the preparation of nano- and microsuspensionscitations
- 2024Impact of drug compounds mechanical/deformation properties on the preparation of nano- and microsuspensionscitations
- 2024A Systematic Investigation of Process Parameters for Small-Volume Aqueous Suspension Production by the Use of Focused Ultrasonication
- 2024A Systematic Investigation of Process Parameters for Small-Volume Aqueous Suspension Production by the Use of Focused Ultrasonication
- 2024Is roller milling – the low energy wet bead media milling – a reproducible and robust milling method for formulation investigation of aqueous suspensions?citations
- 2021Simultaneous determination of cyclodextrin stability constants as a function of pH and temperature – A tool for drug formulation and process designcitations
- 2020In Vivo Performance of Innovative Polyelectrolyte Matrices for Hot Melt Extrusion of Amorphous Drug Systemscitations
- 2019Modified Polymer Matrix in Pharmaceutical Hot Melt Extrusion by Molecular Interactions with a Carboxylic Coformercitations
- 2019Montmorillonite-surfactant hybrid particles for modulating intestinal P-glycoprotein-mediated transportcitations
- 2018Influence of PVP molecular weight on the microwave assisted in situ amorphization of indomethacincitations
- 2018Comparison of two DSC-based methods to predict drug-polymer solubilitycitations
- 2017Amorphization within the tabletcitations
- 2016Roller compaction scale-up using roll width as scale factor and laser-based determined ribbon porosity as critical material attributecitations
- 2016Glass solution formation in water - In situ amorphization of naproxen and ibuprofen with Eudragit® E POcitations
- 2015Evaluation of drug-polymer solubility curves through formal statistical analysiscitations
- 2013Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to ratscitations
- 2008Characterization and physical stability of spray dried solid dispersions of probucol and PVP-K30citations
Places of action
Organizations | Location | People |
---|
article
Amorphization within the tablet
Abstract
<p>In situ amorphization is a concept that allows to amorphize a given drug in its final dosage form right before administration. Hence, this approach can potentially be used to circumvent recrystallization issues that other amorphous formulation approaches are facing during storage. In this study, the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements revealed that with increasing microwaving power and time, the fractions of crystalline IND and amorphous PVP reduced, whereas the amount of in situ formed IND-PVP glass solution increased. Intrinsic dissolution showed that the dissolution rate of the microwaved solid dispersion was similar to that of a quench cooled, fully amorphous glass solution even though the microwaved samples contained residual crystalline IND.</p>