People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hirvonen, Jouni Tapio
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol sebacate)/Nanoparticle-Based Composite Patch for Myocardial Infarction Applicationscitations
- 2020Multifunctional 3D-printed patches for long-term drug release therapies after myocardial infarctioncitations
- 2018Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regenerationcitations
- 2017Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitationcitations
- 2017Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabricationcitations
- 2016Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal modelcitations
- 2015Microfluidic Nanoprecipitation of a Stimuli Responsive Hybrid Nanocomposite for Antitumoral Applications
Places of action
Organizations | Location | People |
---|
article
Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication
Abstract
<p>The accessibility to microfluidics of a broader scientific community is often limited by the costly and complex manufacture of the chips. In this respect, we present a simple and reusable platform for the flexible and easy assembly of glass capillaries to create a microfluidics chip within minutes, with excellent chemical compatibility and durability, and without the need of using specialized infrastructure. To demonstrate the application of the proposed platform, we have used it to produce microparticles by the double emulsion approach, nanoparticles by nanoprecipitation, and screened the nanoparticles' size and polydispersity obtained upon modification of various parameters. (C) 2016 Elsevier B.V. All rights reserved.</p>