People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aroso, Ivo M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Comparing deep eutectic solvents and cyclodextrin complexes as curcumin vehicles for blue-light antimicrobial photodynamic therapy approachescitations
- 2022Future Directions for Ureteral Stent Technology: From Bench to the Marketcitations
- 2021A Fibrin Coating Method of Polypropylene Meshes Enables the Adhesion of Menstrual Blood-Derived Mesenchymal Stromal Cells: A New Delivery Strategy for Stem Cell-Based Therapiescitations
- 2016In vitro bioactivity studies of ceramic structures isolated from marine spongescitations
- 2016Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systemscitations
- 2015Design of controlled release systems for THEDES - Therapeutic deep eutectic solvents, using supercritical fluid technologycitations
- 2014Surface modification of silica-based marine sponge bioceramics induce hydroxyapatite formationcitations
Places of action
Organizations | Location | People |
---|
article
Design of controlled release systems for THEDES - Therapeutic deep eutectic solvents, using supercritical fluid technology
Abstract
<p>Abstract Deep eutectic solvents (DES) can be formed by bioactive compounds or pharmaceutical ingredients. A therapeutic DES (THEDES) based on ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), and menthol was synthesized and its thermal behavior was analyzed by differential scanning calorimetry (DSC). A controlled drug delivery system was developed by impregnating a starch:poly-Ïμ-caprolactone polymeric blend (SPCL 30:70) with the menthol:ibuprofen THEDES in different ratios (10 and 20 wt%), after supercritical fluid sintering at 20 MPa and 50 °C. The morphological characterization of SPCL matrices impregnated with THEDES was performed by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Drug release studies were carried out in a phosphate buffered saline. The results obtained provide important clues for the development of carriers for the sustainable delivery of bioactive compounds.</p>