Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pinto, João F.

  • Google
  • 4
  • 9
  • 146

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2015Generation of hydrate forms of paroxetine HCl from the amorphous state: an evaluation of thermodynamic and experimental predictive approaches4citations
  • 2014The influence of drug physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: A case study using olanzapine77citations
  • 2014An investigation into the dehydration behavior of paroxetine HCl form i using a combination of thermal and diffraction methods: The identification and characterization of a new anhydrous form23citations
  • 2012Identification and characterization of stoichiometric and nonstoichiometric hydrate forms of paroxetine HCl: Reversible changes in crystal dimensions as a function of water absorption42citations

Places of action

Chart of shared publication
Craig, Duncan Q. M.
4 / 14 shared
Zhao, Min
4 / 10 shared
Pina, M. Fátima
3 / 3 shared
Sousa, João J.
4 / 4 shared
Pina, Mf
1 / 1 shared
Fábián, László
2 / 2 shared
Suleiman, Osama
1 / 1 shared
Frampton, Christopher S.
1 / 1 shared
Diaz, Victor
1 / 1 shared
Chart of publication period
2015
2014
2012

Co-Authors (by relevance)

  • Craig, Duncan Q. M.
  • Zhao, Min
  • Pina, M. Fátima
  • Sousa, João J.
  • Pina, Mf
  • Fábián, László
  • Suleiman, Osama
  • Frampton, Christopher S.
  • Diaz, Victor
OrganizationsLocationPeople

article

Generation of hydrate forms of paroxetine HCl from the amorphous state: an evaluation of thermodynamic and experimental predictive approaches

  • Craig, Duncan Q. M.
  • Zhao, Min
  • Pina, M. Fátima
  • Pinto, João F.
  • Sousa, João J.
Abstract

In this study, we evaluate the use of theoretical thermodynamic analysis of amorphous paroxetine hydrochloride (HCl) as well as experimental assessment in order to identify the most promising approach to stability and dissolution behaviour prediction, particularly in relation to stoichiometric and nonstoichiometric hydrate formation. Differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared and X-ray diffraction techniques were used. Parameters including heat capacity, configurational thermodynamic quantities, fragility and relaxation time classified amorphous paroxetine HCl as a moderate fragile glass with a considerable degree of molecular mobility. Solubility studies indicated little advantage of the amorphous form over the crystalline due to conversion to the hydrate Form I during equilibration, while the dissolution rate was higher for the amorphous form under sink conditions. A marked difference in the physical stability of amorphous paroxetine HCl was observed between dry and low humidity storage, with the system recrystallizing to the hydrate form. We conclude that, in this particular case (amorphous conversion to the hydrate), water may be playing a dual role in both plasticizing the amorphous form and driving the equilibrium towards the hydrate form, hence prediction of recrystallization behaviour from amorphous characteristics may be confounded by the additional process of hydrate generation.

Topics
  • amorphous
  • mobility
  • x-ray diffraction
  • glass
  • glass
  • thermogravimetry
  • differential scanning calorimetry
  • recrystallization
  • heat capacity
  • spectroscopy