Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khunawattanakul, Wanwisa

  • Google
  • 4
  • 5
  • 158

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2013Characterization of chitosan-magnesium aluminum silicate nanocomposite films for buccal delivery of nicotine25citations
  • 2011Novel chitosan-magnesium aluminum silicate nanocomposite film coatings for modified-release tablets38citations
  • 2010Chitosan-magnesium aluminum silicate nanocomposite films43citations
  • 2008Chitosan-magnesium aluminum silicate composite dispersions52citations

Places of action

Chart of shared publication
Pongjanyakul, Thaned
4 / 7 shared
Gordon, Keith C.
1 / 14 shared
Rades, Thomas
4 / 107 shared
Puttipipatkhachorn, Satit
4 / 6 shared
Strachan, Clare J.
1 / 10 shared
Chart of publication period
2013
2011
2010
2008

Co-Authors (by relevance)

  • Pongjanyakul, Thaned
  • Gordon, Keith C.
  • Rades, Thomas
  • Puttipipatkhachorn, Satit
  • Strachan, Clare J.
OrganizationsLocationPeople

article

Novel chitosan-magnesium aluminum silicate nanocomposite film coatings for modified-release tablets

  • Pongjanyakul, Thaned
  • Rades, Thomas
  • Khunawattanakul, Wanwisa
  • Puttipipatkhachorn, Satit
Abstract

Chitosan (CS), a positively charged polysaccharide, and magnesium aluminum silicate (MAS), a negatively charged clay with silicate layers, can electrostatically interact to form nanocomposite films. In this study, CS-MAS nanocomposite films were evaluated for use in tablet film coating. Effects of CS-MAS ratio and coating level on water uptake and drug release from the coated tablets were investigated. Surface and film matrix morphology of the coated film and the effect of enzymes in the simulated gastro-intestinal fluid on drug release were also examined. The results demonstrated that the CS-MAS coated tablets had a rough surface and a layered matrix film, whereas a smooth surface and dense matrix film on the CS coated tablets was found. However, the CS-MAS coated tablets provided fewer film defects than the CS coated tablets. Nanocomposite formation between CS and MAS could retard swelling and erosion of CS in the composite films in acidic medium. The higher MAS ratio of the CS-MAS coated tablets gave lower water uptake and slower drug release when compared with the CS coated tablets. Moreover, the CS-MAS films on the tablets presented good stability towards enzymatic degradation in simulated intestinal fluid. The release of drug from the CS-MAS coated tablets could be modulated by varying CS-MAS ratios and coating levels. Additionally, drug solubility also influenced drug release characteristics of the CS-MAS coated tablets. These findings suggest that the CS-MAS nanocomposites displays a strong potential for use in tablet film coating intended for modifying drug release from tablets.

Topics
  • nanocomposite
  • surface
  • Magnesium
  • Magnesium
  • aluminium
  • layered
  • defect