People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hinrichs, Wouter
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Combinations of arginine and pullulan reveal the selective effect of stabilization mechanisms on different lyophilized proteinscitations
- 2018The mechanism behind the biphasic pulsatile drug release from physically mixed poly(DL-lactic(-co-glycolic) acid)-based compactscitations
- 2016Compacted Solid Dosage Form
- 2015Protein release from water-swellable poly(d,l-lactide-PEG)-b-poly(ϵ-caprolactone) implantscitations
- 2015Protein Stability during Hot Melt Extrusion
- 2015Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteinscitations
- 2015Protein Stability during Hot Melt Extrusion: The Effect of Extrusion Temperature, Hydrophilicity of Polymers and Sugar Glass Pre-stabilization
- 2015Polymeric formulations for drug release prepared by hot melt extrusioncitations
- 2013Designing CAF-adjuvanted dry powder vaccinescitations
- 2013Unraveling protein stabilization mechanismscitations
- 2012Preparation and physicochemical evaluation of a new tacrolimus tablet formulation for sublingual administrationcitations
- 2010Effect of drug-carrier interaction on the dissolution behavior of solid dispersion tabletscitations
- 2006Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniquescitations
- 2005Inulin is a promising cryo- and lyoprotectant for PEGylated lipoplexescitations
- 2004Incorporation of lipophilic drugs in sugar glasses by lyophilization using a mixture of water and tertiary butyl alcohol as solventcitations
- 2003Investigations into the stabilization of drugs by sugar glassescitations
- 2001Inulin glasses for the stabilization of therapeutic proteinscitations
Places of action
Organizations | Location | People |
---|
article
Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques
Abstract
<p>The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T-g), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam solid dispersions prepared by fusion for all drug loads tested (10-80 wt.%). The T-g of these solid dispersions gradually changed with composition and decreased from 177 degrees C for pure PVP to 46 degrees C for diazepam. These observations indicate that diazepam was dispersed in PVP on a molecular level. However, in PVP-diazepam solid dispersions prepared by freeze drying, two T-g's were observed for drug loads above 35 wt.% indicating phase separation. One T-g indicated the presence of amorphous diazepam clusters, the other T-g was attributed to a PVP-rich phase in which diazepam was dispersed on a molecular level. With both the value of the latter T-g and the Delta C-p of the diazepam glass transition the concentrations of molecular dispersed diazepam could be calculated (27-35 wt.%). Both methods gave similar results. Water vapour sorption (DVS) experiments revealed that the PVP-matrix was hydrophobised by the incorporated diazepam. TMDSC and DVS results were used to estimate the size of diazepam clusters in freeze dried PVP-diazepam solid dispersions, which appeared to be in the nano-meter range. The inulin-diazepam solid dispersions prepared by spray freeze drying showed one T-g for drug loads up to 35 wt.% indicating homogeneous distribution on a molecular level. However, this T-g was independent of the drug load, which is unexpected because diazepam has a lower T-g than inulin (46 and 155 degrees C, respectively). For higher drug loads, a T-g of diazepam as well as a T-g of the inulin-fich phase was observed, indicating the formation of amorphous diazepam clusters. From the AC, of the diazepam glass transition the amount of molecularly dispersed diazepam was calculated (12-27 wt.%). In contrast to the PVP-diazepam solid dispersions, DVS-experiments revealed that inulin was not hydrophobised by diazepam, Consequently, the size of diazepam clusters could not be estimated. It was concluded that TMDSC enables characterization and quantification of the molecular distribution in amorphous solid dispersions. When the hygroscopicity of the carrier is reduced by the drug, DVS in combination with TMDSC can be used to estimate the size of amorphous drug clusters. (C) 2005 Elsevier B.V. All rights reserved.</p>