People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Polyzos, Efstratios
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Analytical probabilistic progressive damage modeling of single composite filaments of material extrusioncitations
- 2023Stochastic semi-analytical modeling of reinforced filaments for additive manufacturingcitations
- 2023An Open-Source ABAQUS Plug-In for Delamination Analysis of 3D Printed Compositescitations
- 2023Mode I, mode II and mixed mode I-II delamination of carbon fibre-reinforced polyamide composites 3D-printed by material extrusioncitations
- 2023Extension–bending coupling phenomena and residual hygrothermal stresses effects on the Energy Release Rate and mode mixity of generally layered laminatescitations
- 2023Measuring and Predicting the Effects of Residual Stresses from Full-Field Data in Laser-Directed Energy Depositioncitations
- 2022Modeling elastic properties of 3D printed composites using real fiberscitations
- 2021Analytical model for the estimation of the hygrothermal residual stresses in generally layered laminatescitations
- 2021Delamination analysis of 3D-printed nylon reinforced with continuous carbon fiberscitations
- 2021Numerical modelling of the elastic properties of 3D-printed specimens of thermoplastic matrix reinforced with continuous fibrescitations
Places of action
Organizations | Location | People |
---|
article
Modeling elastic properties of 3D printed composites using real fibers
Abstract
The microstructure of 3D printed composites is inherently different than traditional composites due to the manufacturing process. The differences influence morphological characteristics such as the contour of the cross-section of the fiber and alter the macroscopic behavior of 3D printed parts. This article investigates the microstructural morphology of 3D printed nylon reinforced with continuous carbon fibers and the effect of microstructural irregularities on the macrostructural elastic response through stochastic homogenization modeling. The contour of the carbon fibers is extracted from scanning electron microscopy (SEM) micrographs available in the literature and used to generate realistic and ideal (ellipsoidal, circular) contours in a stochastic manner using a newmethodology. Furthermore, a novel method is introduced to generate single- and multiple-fiber representative volume elements (RVEs) in finite element (FE) software for the approximation of the effective elastic properties. To minimize the computational effort associated with the full numerical modeling of multiple-fiber RVEs, anovel semi-analytical approach is demonstrated based on the numerical estimation of stiffness contribution tensors and the implementation of analytical effective field methods. The results of the numerical and semi-analytical models are compared with analytical models and exhibit a good agreement.