People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sivaswamy, Giribaskar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Effect of heat treatments on microstructure and mechanical properties of low-cost Ti-6Al-4V alloy produced by thermo-mechanical powder consolidation routecitations
- 2023Miniaturised experimental simulation of open-die forgingcitations
- 2022An innovative constitutive material model for predicting high temperature flow behaviour of inconel 625 alloycitations
- 2022An analysis of the forgeability of Ti-10V-2Fe-3Al β titanium alloy using a combined Estrin Mecking and Avrami material constitutive modelcitations
- 2021A novel cyclic thermal treatment for enhanced globularisation kinetics in Ti-6Al-4V alloycitations
- 2021Effect of texture and mechanical anisotropy on flow behaviour in Ti-6Al-4V alloy under superplastic forming conditionscitations
- 2021A new route for developing ultrafine-grained Al alloy strips using repetitive bending under tensioncitations
- 2020Formability of AA-7075 sheets subjected to repetitive bending under tension
- 2020Mechanical response and microstructure evolution of commercially pure titanium subjected to repetitive bending under tensioncitations
- 2018Design and validation of a fixture for positive incremental sheet formingcitations
- 2018Effect of deformation-induced adiabatic heating on microstructure evolution during open-die screw press forging of Ti-6Al-4V.
- 2017Effect of incremental equal channel angular pressing (I-ECAP) on the microstructural characteristics and mechanical behaviour of commercially pure titaniumcitations
- 2017Microstructure and mechanical properties of Al-1050 during incremental ECAPcitations
- 2014Complex Incremental Sheet Forming Using Back Die Support on Aluminium 2024, 5083 and 7075 alloyscitations
- 2014Improvement in ductility in commercially pure titanium alloys by stress relaxation at room temperaturecitations
Places of action
Organizations | Location | People |
---|
article
An analysis of the forgeability of Ti-10V-2Fe-3Al β titanium alloy using a combined Estrin Mecking and Avrami material constitutive model
Abstract
<p>A constitutive model was developed to predict the high temperature sub-transus flow behavior of a metastable β Ti-10V-2Fe-3Al alloy, and its applicability for industrial scale forging process has been evaluated using a finite element simulation. Cylindrical samples extracted from a cogged billet of the alloy after β recrystallisation treatment were subjected to hot compression tests at sub-transus temperatures ranging from 720 °C to 780 °C with an increment of 15 °C under varying strain rates from 0.025 to 0.2 s−1. The sub-transus flow curves of the alloy exhibited work hardening followed by dynamic recovery and flow softening beyond the strain equivalent to peak stress. Formation of low angle grain boundaries within the prior β grains and dynamic recrystallisation of β phase were observed to contribute to the flow softening. A constitutive model based on Estrin Mecking and Avrami methods was developed with minimised number of material constants, using the data derived from the hot compression tests. The model was successfully verified using the deformation behaviour measured for the alloy in the region of interest. The constitutive model was implemented into a finite element package as a user subroutine to predict the flow behaviour of industrial scale billets during open die hot forging processes and validated using experimental trials. A fairly good predictive capability with more than 95% convergence for open die forging was achieved, confirming the suitability of the material model developed for predicting sub-transus forgeability of the Ti-10V-2Fe-3Al alloy during industrial scale forging.</p>