People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pellegrino, Antonio
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Strain rate and temperature dependence of short/unidirectional carbon fibre PEEK hybrid compositescitations
- 2024Strain rate and temperature dependence of short/unidirectional carbon fibre PEEK hybrid compositescitations
- 2024A data-driven rate and temperature dependent constitutive model of the compression response of a syntactic foamcitations
- 2024A comprehensive investigation on the temperature and strain rate dependent mechanical response of three polymeric syntactic foams for thermoforming and energy absorption applicationscitations
- 2024A Novel Specimen Design for Multiaxial Loading Experiments at High Strain Ratescitations
- 2023Dynamic response of Advanced Placed Ply compositescitations
- 2023Influence of Strain History on Dynamic Strain Localization and Stress State During High-Rate Tensile Loading of Titanium Alloys:Experiments, Modeling, and Analytical Methodscitations
- 2023A data-driven model of the yield and strain hardening response of commercially pure titanium in uniaxial stresscitations
- 2023Influence of Strain History on Dynamic Strain Localization and Stress State During High-Rate Tensile Loading of Titanium Alloyscitations
- 2022The dependency of compressive response of epoxy syntactic foam on the strain rate and temperature under rigid confinementcitations
- 2022Loading mode and lateral confinement dependent dynamic fracture of a glass ceramic Macorcitations
- 2022Pure shear plastic flow and failure of titanium alloys under quasi-static and dynamic torsional loadingcitations
- 2022Temperature dependent dynamic compressive response of PA66-GF30 composite under constant strain rate multiaxial loadingcitations
- 2022Experimental analysis of the multiaxial failure stress locus of commercially pure titanium at low and high rates of straincitations
- 2021Temperature dependent dynamic strain localization and failure of ductile polymeric rods under large deformationcitations
- 2021Thermomechanical constitutive behaviour of a near α titanium alloy over a wide range of strain ratescitations
- 2021Dynamic necking of a near α titanium alloy at high strain ratescitations
- 2021Measurement of pure shear constitutive relationship from torsion tests under quasi-static, medium, and high strain rate conditionscitations
- 2020Strain rate and temperature dependent strain localization of a near α titanium alloycitations
- 2020Dynamic tensile testing of needle-punched nonwoven fabricscitations
- 2020Rate dependent behaviour and dynamic strain localisation of three novel impact resilient titanium alloyscitations
- 2019A new technique for tensile testing of engineering materials and composites at high strain ratescitations
- 2018Measurements of the effects of pure and salt water absorption on the rate-dependent response of an epoxy matrixcitations
- 2018Effect of particle morphology, compaction, and confinement on the high strain rate behavior of sandcitations
- 2017Bayesian calibration of microCT-based DEM simulations for predicting the effective elastic response of granular materials
- 2017Strain rate dependence of mode II delamination resistance in through thickness reinforced laminated compositescitations
- 2016Effect of strain rate and fibre rotation on the in-plane shear response of ±45° laminates in tension and compression testscitations
- 2016The Dynamic Response of Etnean Sand and the Effect of Its Impingement on Ti-6Al-4 V Alloycitations
- 2015The mechanical response of a syntactic polyurethane foam at low and high rates of straincitations
Places of action
Organizations | Location | People |
---|
article
Temperature dependent dynamic strain localization and failure of ductile polymeric rods under large deformation
Abstract
Ductile polymers have been increasingly applied in engineering applications to enhance the structural reliability under impact loading. Due to the limitation of experimental setup to achieve large tensile deformation and the difficulty to achieve dynamic force equilibrium, the localization and post-necking stages up to fracture of ductile polymers at high strain rates have less been investigated. In the present work, the dynamic strain localization of ductile polymeric rods under large tensile deformation up to fracture is studied on the bespoke Hopkinson tension bar synchronized with a high-speed camera. Transparent polycarbonate (PC) is used as a model material in the present study. Likewise, the constitutive response and fracture behaviour of polycarbonate are also characterized with the assistance of Digital Image Correction (DIC) from low to high strain rates under various temperature conditions. The results quantitatively show that the dynamic local strain rate initially increases dramatically to 200 % of the nominal strain rate due to strain localization. This is followed by a rapid drop with necking propagation, and finally tends to stay at strain rate of approximately 20 % of the nominal strain rate until fracture. The elevated temperatures would result in higher local strain rates. Two constitutive models with and without the consideration of constant strain rate condition are constructed for PC and incorporated in finite element simulations. The trend of dynamic local strain rate history with respect to nominal strain rate is successfully reproduced in simulations. The constitutive models particularly the simple dynamic amplification model, are able to reflect the phenomenological key features of the experimentally observed macroscopic and local responses of polycarbonate, and would find their potential applications in impact resistant transparency design.