People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Belnoue, Jonathan P.-H.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024An accurate forming model for capturing the nonlinear material behaviour of multilayered binder-stabilised fabrics and predicting fibre wrinklingcitations
- 2024That’s how the preform crumples: Wrinkle creation during forming of thick binder-stabilised stacks of non-crimp fabricscitations
- 2024Virtual data-driven optimisation for zero defect composites manufacturecitations
- 2024Parametric study on the effect of material properties, tool geometry, and tolerances on preform quality in wind turbine blade manufacturingcitations
- 2024Process models: A cornerstone to composites 4.0citations
- 2024But how can I optimise my high-dimensional problem with only very little data? – A composite manufacturing applicationcitations
- 2023A comprehensive modelling framework for defect prediction in automated fibre placement of composites
- 2023Thickness Control of Autoclave-Molded Composite Laminatescitations
- 2022Intelligent Composites Forming - Simulations For Faster, Higher Quality Manufacture
- 2022A MODELLING FRAMEWORK FOR THE EVOLUTION OF PREPREG TACK UNDER PROCESSING CONDITIONS
- 2022Understanding tack behaviour during prepreg-based composites’ processingcitations
- 2021On the physical relevance of power law-based equations to describe the compaction behaviour of resin infused fibrous materialscitations
- 2021Consolidation-driven wrinkling in carbon/epoxy woven fabric prepregscitations
- 2021Compaction behaviour of continuous fibre-reinforced thermoplastic composites under rapid processing conditionscitations
- 2021Modelling compaction behavior of toughened prepreg during automated fibre placement
- 2021Lab-based in-situ micro-CT observation of gaps in prepreg laminates during consolidation and curecitations
- 2021Hypo-viscoelastic modelling of in-plane shear in UD thermoset prepregscitations
- 2020Predicting consolidation-induced wrinkles and their effects on composites structural performancecitations
- 2020Experimental characterisation of the in-plane shear behaviour of UD thermoset prepregs under processing conditionscitations
- 2020A rapid multi-scale design tool for the prediction of wrinkle defect formation in composite componentscitations
- 2019Modelling of the in-plane shear behavior of uncured thermoset prepreg
- 2019A numerical study of variability in the manufacturing process of thick composite partscitations
- 2019Machine-driven experimentation for solving challenging consolidation problems
- 2019Mitigating forming defects by local modification of dry preformscitations
- 2018Modelling process induced deformations in 0/90 non-crimp fabrics at the meso-scalecitations
- 2018Experimental Characterisation of In-plane Shear Behaviour of Uncured Thermoset Prepregs
- 2018Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregscitations
- 2016Predicting wrinkle formation in components manufactured from toughened UD prepreg
- 2016Understanding and prediction of fibre waviness defect generation
- 2016Cohesive/Adhesive failure interaction in ductile adhesive joints Part Icitations
- 2016An experimental investigation of the consolidation behaviour of uncured prepregs under processing conditionscitations
- 2015The compaction behaviour of un-cured prepregs
- 2012A numerical model for thick composite-metallic adhesive joints
- 2011Adaptive calibration of a nonlocal coupled damage plasticity model for aluminium alloy AA6082 T0
- 2007Modeling crack initiation and propagation in nickel base superalloys
Places of action
Organizations | Location | People |
---|
article
On the physical relevance of power law-based equations to describe the compaction behaviour of resin infused fibrous materials
Abstract
The mechanical performance of structural parts (e.g. a 20 m+ aircraft wing) made from pre-impregnated (prepreg) fibre reinforced polymers (FRP) are intimately linked to the material’s meso-scale (sub-mm length) and micro-scale (micro-m length), which in turns depends upon the way the fibre mat impregnated with resin has been processed. Particularly important is the way the resin flows through the fibre bed, as that influences the level of porosity and the orientation of the fibres in the final part by controlling the stack’s change of thickness during manufacture. In this paper, the applicability of a recently proposed phenomenological model, able to predict the thickness evolution of a wide class of prepreg stacks under processing conditions, is investigated. One of the model’s main advantages is that, unlike other flow-compaction models, it can capture the transition between squeezing and bleeding flow. The model’s significance for a variety of reinforcements (i.e. UD carbon, UD glass and carbon fibre plain weave) and resin systems (i.e. first and second generation of toughened thermoset and thermoplastic resins) is demonstrated. A new physics-based interpretation of the material parameters is proposed. This gives rise to an analytical expression relating the thickness evolution with time to the applied temperature and pressure cycles, the viscosity of the resin, and meso- and micro- geometrical characteristics of the reinforcements. The contribution paves the way towards a better understanding and control of the variability and increased digitalisation of the design and manufacturing processes of composite structures.