People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Simpson, Christopher A.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2021Investigating the microstructure and mechanical behaviour of simulant "lava-like" fuel containing materials from the Chernobyl reactor unit 4 meltdowncitations
- 2021Evaluation of fracture toughness and residual stress in AISI 316L electron beam weldscitations
- 2021In-situ Measurements of Stress During Thermal Shock in Clad Pressure Vessel Steel Using Synchrotron X-ray Diffractioncitations
- 2020Unifying the effects of in and out-of-plane constraint on the fracture of ductile materialscitations
- 2020The effect of anisotropic microstructure on the crack growth and fatigue overload behaviour of ultrafine-grained nickelcitations
- 2020Microstructure-informed, predictive crystal plasticity finite element model of fatigue-dwellscitations
- 2020A novel insight into the primary creep regeneration behaviour of a polycrystalline material at high-temperature using in-situ neutron diffractioncitations
- 2020The effect of grain size on the fatigue overload behaviour of nickelcitations
- 2019Validating 3D two-parameter fracture mechanics models for structural integrity assessmentscitations
Places of action
Organizations | Location | People |
---|
article
In-situ Measurements of Stress During Thermal Shock in Clad Pressure Vessel Steel Using Synchrotron X-ray Diffraction
Abstract
Thermal shocks are an important incident in operation of a pressure vessel which can have a significant impact on the structural integrity of the vessel. Often experiments that consider the state of the vessel before and after the thermal shock are used to evaluate the effects of the thermal shock. The studies can be complemented by time-resolved numerical simulations, which may be validated against the final state of the vessel obtained experimentally, to infer the transient response of the material. The transient response is important as the material experiences the highest level of stress in a short period which can induce catastrophic failure. This paper reports time-resolved experimental quantification of strain in reactor pressure vessel material during thermal shock measured by in-situ synchrotron diffraction. Specimens were extracted from a plate of nuclear pressure vessel steel with a nickel alloy cladding deposited by overlay welding. The specimens, with and without cracks, were subjected to thermal loading by heating then rapidly quenching the cladding in cold water. Strains were measured during thermal loading at a point near the crack tip from which the stress state around the crack tip was calculated and compared with a transient finite element model of the experiment. It was found that the peak near-tip stress occurred within the first second after the onset of rapid cooling. It was demonstrated from experimental measurements that the peak stress intensity factor occurred during thermal shock, rather than under steady conditions before or after the thermal shock. It was shown that although the finite element simulation predicts the steady state condition of the material after thermal shock, its transient response dependents significantly on a number of inputs with high uncertainty, making its time-resolved results unreliable for high-fidelity integrity assessments