People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pottier, Thomas
Laboratoire Angevin de Mécanique, Procédés et InnovAtion
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Drilling of multi-material stacks for the assembly of aeronautical structures: from the characterization of the cutting mechanisms to the development of Smart drilling techniques
- 2021Effect of oxidation on spectral and integrated emissivity of Ti-6Al-4V alloy at high temperaturescitations
- 2020Thermomechanical coupling investigation in Ti-6Al-4V orthogonal cutting: experimental and numerical confrontationcitations
- 2020Series parts manufacturing by infrared superplastic forming with numerical techniques for thermal regulation
- 2019Series parts manufacturing by infrared superplastic forming with numerical techniques for thermal regulation
- 2017Industrial applications of the superplastic forming by using Infra-Red heatercitations
- 2017Industrial applications of the superplastic forming by using Infra-Red heatercitations
- 2017Numerical and experimental investigations of Ti-6Al-4V chip generation and thermo-mechanical couplings in orthogonal cuttingcitations
- 2016Multi-scale surface modeling of the nonlinear mechanical behaviour of AISI H11 hot work tool steel
- 2016Multi-scale Modelling of the Surface Behaviour of AISI H11 Tool Steels
- 2016A multi-scale approach to investigate the non linear subsurface behavior and strain localization of X38CrMoV5-1 martensitic tool steel: experiment and numerical analysiscitations
- 2016Thermo-Mechanical Modeling of Distortions Promoted during Cooling of Ti-6Al-4V Part Produced by Superplastic Forming
- 2015Thermo-Mechanical Modeling of Distortions Promoted during Cooling of Ti-6Al-4V Part Produced by Superplastic Forming
- 2014Sub-millimeter measurement of finite strains at cutting tool tip vicinitycitations
- 2010Constitutive parameter identification using finite element updating method associated with kinematic and thermal full field measurements
Places of action
Organizations | Location | People |
---|
article
Thermomechanical coupling investigation in Ti-6Al-4V orthogonal cutting: experimental and numerical confrontation
Abstract
The constant industrial need of detail data on the chip formation meets with the lack of a physical understanding of the thermo-mechanical couplings during hard metal cutting. In the present paper, numerical and experimental investigations at micro scale (about 0.5 × 0.5 mm2 area), is performed in order to highlight the mechanisms responsible for the poor Ti-6Al-4V machinability. In a first step, strain, strain-rates, temperatures, dissipated powers along with displacements, velocity and crack propagation are obtained at each pixel by means of VISIR apparatus. Experimental observations have highlighted the dependency of the physical phenomena to both cutting speed and rake angle and provide valuable evidences on the different nature of the coupling phenomenon. Secondly, a 3D FE orthogonal cutting model is then developed to bring a multi-scale comprehension of Ti-6Al-4V chip genesis and to predict the kinematics and thermal quantities. The numerical and experimental confrontation revealed the robustness of the developed FE model as well as its limits. Hence, the element deletion method and the friction model are identified as the main weak spots of the proposed FE model. Finally, a particular attention is paid to the chip formation steps and their impact on the final part.