People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Smyth, Niall
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Machine learning-based prediction and optimisation system for laser shock peeningcitations
- 2019The effect of material cyclic deformation properties on residual stress generation by laser shock processingcitations
- 2019Recovery of fatigue life using laser peening on 2024‐T351 aluminium sheet containing scratch damagecitations
- 2017Effect of Treatment Area on Residual Stress and Fatigue in Laser Peened Aluminum Sheetscitations
- 2014Effect on Fatigue Performance of Residual Stress induced via Laser Shock Peening in Mechanically Damaged 2024‐T351 Aluminium Sheet
- 2014Fatigue life recovery via laser shock peening in mechanically damaged aluminium sheet; experiments and prediction modelscitations
- 2012Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defectscitations
Places of action
Organizations | Location | People |
---|
article
The effect of material cyclic deformation properties on residual stress generation by laser shock processing
Abstract
<p>Laser shock processing (LSP) is a mechanical surface treatment to induce a compressive residual stress state into the near surface region of a metallic component. The effect of the cyclic deformation properties of ductile materials on the final residual stress fields obtained by LSP is analysed. Conventional modelling approaches either use simple tensile yield criteria, or isotropic hardening models if cyclic straining response is considered for the material during the peen processing. In LSP, the material is likely to be subject to cyclic loading because of reverse yielding after the initial plastic deformation. The combination of experiment and modelling shows that the incorporation of experimentally-determined cyclic stress-strain data, including mechanical hysteresis, into material deformation models is required to correctly reflect the cyclic deformation processes during LSP treatment and obtain accurate predictions of the induced residual stresses.</p>