Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Julien, Renaud

  • Google
  • 2
  • 5
  • 24

Institut Clément Ader

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Characterization and modeling of forged Ti-6Al-4V Titanium alloy with microstructural considerations during quenching process24citations
  • 2017Comportement thermomécanique et évolution microstructurale d'un alliage Ti-6Al-4V forgé α+β, durant la trempe : expérimentations, analyses et modélisationcitations

Places of action

Chart of shared publication
Dahan, Yoann
1 / 1 shared
Velay, Vincent Lionel Sébastien
1 / 29 shared
Forestier, Romain
1 / 4 shared
Vidal, Vanessa
1 / 37 shared
Rezai-Aria, Farhad
1 / 67 shared
Chart of publication period
2018
2017

Co-Authors (by relevance)

  • Dahan, Yoann
  • Velay, Vincent Lionel Sébastien
  • Forestier, Romain
  • Vidal, Vanessa
  • Rezai-Aria, Farhad
OrganizationsLocationPeople

article

Characterization and modeling of forged Ti-6Al-4V Titanium alloy with microstructural considerations during quenching process

  • Dahan, Yoann
  • Velay, Vincent Lionel Sébastien
  • Forestier, Romain
  • Vidal, Vanessa
  • Julien, Renaud
  • Rezai-Aria, Farhad
Abstract

The present investigation proposes an experimental device able to assess the thermo-mechanical behavior of Ti-6Al-4V Titanium alloy throughout the die-forging operation. Constitutive equations are developed to assess the influence of the process (die-forging temperature, cooling rate) and the microstructure parameters on the mechanical response of the alloy. For this purpose, a non-unified behavior model formulation is implemented, which defines two main mechanisms related to α and β phases and allows the prediction of hardening, strain rate sensitivity and temperature, combined with the phase evolution that is dependent on the cooling conditions and which can greatly affect the mechanical behavior. This identification strategy is then applied for die-forging temperatures below the β-transus temperature, which requires microstructural information provided by SEM (Scanning Electron Microscopy) observations and image analysis. Finally, the approach is extended to die-forging temperatures above the β-transus temperature.

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • scanning electron microscopy
  • titanium
  • titanium alloy
  • forging
  • quenching
  • phase evolution