People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zavašnik, Janez
Jožef Stefan Institute
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Plasma‐Driven Tuning of Dielectric Permittivity in Graphenecitations
- 2023Functionally Graded AA7075 Components Produced via Hot Stamping: A Novel Process Design Inspired from Analysis of Microstructure and Mechanical Propertiescitations
- 2023Crystallography and Surface Oxidation of Stoichiometric Arsenopyrite from Šumadija-Kopaonik Pb-Zn/Polymetallic Ore District (Serbia)
- 2023The most sustainable high entropy alloys for the future
- 2021In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot weldingcitations
- 2021In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot weldingcitations
- 2021In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot weldingcitations
- 2021Dynamic recrystallization's role in strength-ductility trade-off in polycrystalline Fe–Cr–Ni stainless steels produced by laser powder bed fusioncitations
- 2019TiN-Nanoparticulate-Reinforced ZrO2 for Electrical Discharge Machiningcitations
- 2018Mechanical, thermal, and burning properties of viscose fabric compositescitations
Places of action
Organizations | Location | People |
---|
article
In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding
Abstract
<p>Friction stir spot welding (FSSW) is a solid-state welding process, wherein the properties of a weld joint are influenced by the state of friction and localised thermodynamic conditions at the tool-workpiece interface. An issue well-known about FSSW joints is their lack of reliability since they abruptly delaminate at the weld-faying interface (WFI). This study explores the origins of the delamination of multiple lap welded aluminium alloy (AA 5754-H111) sheets joined by FSSW at different rotational speeds typically used in industry. Experimental techniques such as the small punch test (SPT), Vickers hardness test, Scanning Electron Microscopy (SEM), Scanning Acoustic Microscope (SAM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX) and Frequency-Modulated Kelvin Probe Force Microscopy (FM-KPFM) were employed. The experimental results revealed that a complex interplay of stress-assisted metallurgical transformations at the intersection of WFI and the recrystallised stir zone (RSZ) can trigger dynamic precipitation leading to the formation of Al<sub>3</sub>Mg<sub>2</sub> intermetallic phase, while metallic oxides and nanopits remain entrapped in the WFI. These metallurgical transformations surrounded by pits, precipitates and oxides induces process instability which in turn paves way for fast fracture to become responsible for delamination.</p>