People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kennedy, Andrew R.
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2020Compression moulding and injection over moulding of porous PEEK componentscitations
- 2020Generation of graded porous structures by control of process parameters in the selective laser melting of a fixed ratio salt-metal feedstockcitations
- 2020Measurement and modelling of the elastic defection of novel metal syntactic foam composite sandwich structures in 3-point bendingcitations
- 2019Development of metal matrix composites by direct energy deposition of ‘satellited’ powderscitations
- 2019In vitro cellular testing of strontium/calcium substituted phosphate glass discs and microspheres shows potential for bone regenerationcitations
- 2018Pressure-assisted infiltration of molten metals into non-rigid, porous carbon fibre structurescitations
- 2018Modelling and optimisation of sound absorption in replicated microcellular metalscitations
- 2018Porous calcium phosphate glass microspheres for orthobiologic applicationscitations
- 2018Salt-metal feedstocks for the creation of stochastic cellular structures with controlled relative density by powder bed fabricationcitations
- 2017A water-soluble core material for manufacturing hollow composite sectionscitations
- 2016Effect of solidification rate on pore connectivity of aluminium foams and its consequences on mechanical propertiescitations
- 2015Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: characterisation and mechanical propertiescitations
- 2015Porous poly-ether ether ketone (PEEK) manufactured by a novel powder route using near-spherical salt bead porogenscitations
- 2015Porous poly-ether ether ketone (PEEK) manufactured by a novel powder route using near-spherical salt bead porogens : characterisation and mechanical properties
- 2015A study of an improved cutting mechanism of composite materials using novel design of diamond micro-core drillscitations
- 2015Discrete element modelling of flexible fibre packingcitations
Places of action
Organizations | Location | People |
---|
article
A study of an improved cutting mechanism of composite materials using novel design of diamond micro-core drills
Abstract
<p>Core drilling at small diameters in carbon composite materials is largely carried out using diamond electroplated tools consisting of hollow shafts and simplistic geometries that are likely to work in an abrasional/rubbing mode for material removal. The paper reports a step change in the performance of small diameter core drilling by facilitating a shearing mechanism of the composite workpiece through the utilisation of a novel tool design. This has been achieved by laser producing core drills from solid polycrystalline diamond, incorporating controlled cutting edges where the geometries are defined. To evaluate the efficiency of the shearing vs. abrasion/rubbing cutting mechanisms, a critical comparison between the novel (defined cutting edges) and the conventional electroplated tools (randomly distributed micro-grains) has been made with reference to thrust forces, tool wear mechanisms and their influences on the hole quality (e.g. delamination, fibre pullout). This work has been augmented by studies using high-speed thermal imaging of the two tool types in operation. The examinations have shown that, based on the concept of defined cutting edges in solid diamond, there is the possibility to make significant improvements in core drilling performance, (ca. 26% lower thrust force, minimal tool surface clogging, lower drilling temperatures) resulting in improved cleanliness of fibre fracture and a reduced tendency of material delamination.</p>