People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abeykoon, Chamil
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (43/43 displayed)
- 2024Synthesis, properties, applications, 3D printing and machine learning of graphene quantum dots in polymer nanocompositescitations
- 2024A data-driven model on the thermal transfer mechanism of composite phase change materialscitations
- 2024A data-driven model on the thermal transfer mechanism of composite phase change materialscitations
- 2024Adaptive Control of Melt Pressure in Polymer Extrusion Processes Using Extremum-Seeking Control
- 2024Investigation of the effect of reprocessing on thermal and mechanical properties of polymers and polymer nanocompositescitations
- 2024Mechanical properties of LDPE and PS polymer matrix composites reinforced with GNP and CF — A critical reviewcitations
- 2024Adaptive Neuro-Fuzzy Controller for Real-Time Melt Pressure Control in Polymer Extrusion Processes
- 2024Infusion Simulation of Graphene-Enhanced Resin in LCM for Thermal and Chemo-Rheological Analysiscitations
- 2024MXene-Embedded Porous Carbon-Based Cu2O Nanocomposites for Non-Enzymatic Glucose Sensorscitations
- 2024Stimuli-Responsive Codelivery System-Embedded Polymeric Nanofibers with Synergistic Effects of Growth Factors and Low-Intensity Pulsed Ultrasound to Enhance Osteogenesis Propertiescitations
- 2024MXene-Embedded Porous Carbon-Based Cu 2 O Nanocomposites for Non-Enzymatic Glucose Sensorscitations
- 2024Effects of Latex Type and Processed-Mica Waste Loading on the Structural and Thermo-Physical Properties of Natural Rubber Latex Foam Compositescitations
- 2024Investigation of the effect of materials and processing conditions in twin-screw extrusioncitations
- 2023A Numerical Thermo-Chemo-Flow Analysis of Thermoset Resin Impregnation in LCM Processescitations
- 2023Investigation of the effect of the degree of hollowness and internal cavity structure on the mechanical properties of 3D-printed materialscitations
- 2023Investigation of the effect of the degree of hollowness and internal cavity structure on the mechanical properties of 3D-printed materialscitations
- 2023Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate compositescitations
- 2023Melt Pressure Prediction in Polymer Extrusion Processes with Deep Learningcitations
- 2023Melt Pressure Prediction in Polymer Extrusion Processes with Deep Learningcitations
- 2022Numerical Investigation of Multi-scale Characteristics of Single and Multi-layered Woven Structurescitations
- 2022Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate compositescitations
- 2022Composites for Electric Vehicles and Automotive Sector: A Reviewcitations
- 2022Sensing technologies for process monitoring in polymer extrusion: A comprehensive review on past, present and future aspectscitations
- 2022The effects of extrusion parameters and blend composition on the mechanical, rheological and thermal properties of LDPE/PS/PMMA ternary polymer blendscitations
- 2022A review on optical properties and application of transparent ceramicscitations
- 2022Numerical Simulation of Two-Phase Flow in Liquid Composite Moulding Using VOF-Based Implicit Time-Stepping Schemecitations
- 2021Remanufacturing using End-of-Life Vehicles and Electrical and Electronic Equipment Polymer Recyclates - A Paradigm for Assessing the Value Propositioncitations
- 2021Energy efficiency in extrusion-related polymer processing: a review of state of the art and potential efficiency improvementscitations
- 2021Investigation of the effects of fillers in polymer processingcitations
- 2021Comparison of Mechanical Properties of Carbon Fibre and Kaolin Reinforced Polypropylene Compositescitations
- 2020The Effect of Materials’ Rheology on Process Energy Consumption and Melt Thermal Quality in Polymer Extrusioncitations
- 2020Optimization of Fused Deposition Modeling Parameters for Improved PLA and ABS 3D Printed Structurescitations
- 2019Investigation of Thermal Stability of Non-Newtonian Melt Flowscitations
- 2018Design and Applications of Soft Sensors in Polymer Processing: A Reviewcitations
- 2014Investigation of the temperature homogeneity of die melt flows in polymer extrusioncitations
- 2014A Novel Model-Based Controller for Polymer Extrusion
- 2014Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stabilitycitations
- 2014Process Efficiency in Polymer Extrusion: Correlations between the Energy Demand and Melt Thermal Stabilitycitations
- 2014A Novel Soft Sensor for Real-Time Monitoring of the Die Melt Temperature Profile in Polymer Extrusion
- 2014Investigation of the process energy demand in polymer extrusion: a brief review and an experimental studycitations
- 2012Monitoring and Modelling of the Effects of Process Settings and Screw Geometry on Melt Pressure Generation in Polymer Extrusion
- 2012A review and evaluation of melt temperature sensors for polymer extrusioncitations
- 2011The inferential monitoring of screw load torque to predict process fluctuations in polymer extrusioncitations
Places of action
Organizations | Location | People |
---|
article
Investigation of the effect of the degree of hollowness and internal cavity structure on the mechanical properties of 3D-printed materials
Abstract
Despite the wide growth of additive manufacturing, it is still very expensive to mass produce 3D-printed parts. The costs can be minimized if the quantity of material required to produce a part can be substantially reduced by introducing hollow cavities into the structure, without compromising its properties. This study investigates the effect of the degree of hollowness and different internal cavity structures on the mechanical properties of 3D-printed materials. Test specimens were prepared with four polymeric materials (i.e., acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), carbon fiber-reinforced (CFR) ABS, and CFR PLA) using the fused deposition modeling 3D printing technique. Internal hollow cavities were introduced to the specimens during printing and the specimens were prepared with three different cavity structures (i.e., hexagonal honeycomb, circular drills, and squares), and the degree of hollowness was varied from 0% to 30% in 10% increments. Tensile and flexural properties of the 3D-printed specimens were evaluated and analyzed. The mechanical properties of all specimens were found to decrease with increasing hollowness levels, regardless of the type of material or the internal cavity structure. The hexagonal honeycomb structure showed the best tensile properties out of the three internal cavity structures, while the flexural properties were not significantly affected by the internal cavity structure. The material type had a significant impact on the mechanical properties with PLA exhibiting better tensile and flexural properties than ABS, while their carbon fire reinforced counterparts showed enhanced mechanical properties than pure ABS and PLA.