Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Soucase, B. M.

  • Google
  • 1
  • 8
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Synergistic effect of CuxOy-NPs/TiO2-NTs heterostructure on the photodegradation of amido black staining10citations

Places of action

Chart of shared publication
Bessais, B.
1 / 4 shared
Gaidi, M.
1 / 2 shared
Hajjaji, A.
1 / 9 shared
Khezami, L.
1 / 4 shared
Trabelsi, K.
1 / 3 shared
Abidi, M.
1 / 2 shared
Jery, A. El
1 / 1 shared
Sassi, S.
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Bessais, B.
  • Gaidi, M.
  • Hajjaji, A.
  • Khezami, L.
  • Trabelsi, K.
  • Abidi, M.
  • Jery, A. El
  • Sassi, S.
OrganizationsLocationPeople

article

Synergistic effect of CuxOy-NPs/TiO2-NTs heterostructure on the photodegradation of amido black staining

  • Bessais, B.
  • Gaidi, M.
  • Hajjaji, A.
  • Khezami, L.
  • Soucase, B. M.
  • Trabelsi, K.
  • Abidi, M.
  • Jery, A. El
  • Sassi, S.
Abstract

<p>TiO2 nanotube arrays have been extensively investigated for optoelectronic applications besides their excellent photocatalytic activity. The present work aims to study TiO2 nanotubes (NTs) fabricated with the anodization of Ti substrates. CuxOy nanoparticles (NPs) were deposited on TiO2 nanotubes (NTs) using the Successive ionic layer adsorption and reaction (SILAR) method. The obtained nanocomposite was used in the photocatalytic degradation of synthetic organic pollutants (amido black). Particular emphasis was focused on the effect of the morphological, optical, and structural properties of the CuxOy (i.e., the number of SILAR cycles) on the photocatalytic efficiency of the formed heterostructure. The morphological structural and optical properties were investigated by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction analysis (XRD), UV-vis spectroscopy, and photoluminescence (PL), respectively. The results show the formation of TiO2 anatase NTs decorated with CuO and Cu2O NPs. The density and size of the Cu2O NPs were found to increase with the number of SILAR cycles, whereas the energy band gap is narrowed by 0.7 eV. Photocatalytic tests demonstrate that at 15 SILAR cycles, the Cu2O.CuO-NPs/TiO2-NTs heterostructure exhibits the highest photocatalytic performance, reaching 94 % of amido black degradation under UV irradiation (256 nm) for 90 min. The experimental data modeling indicates that the faster the degradation, the better the photocatalytic performance; i.e., the reaction rate k = 0.025 min-1. The current study highlights the potential of CuxOy decorated TiO2 substrates as efficient photocatalytic systems for degrading hazardous organic pollutants.</p>

Topics
  • nanoparticle
  • nanocomposite
  • density
  • impedance spectroscopy
  • photoluminescence
  • scanning electron microscopy
  • x-ray diffraction
  • nanotube
  • transmission electron microscopy
  • Ultraviolet–visible spectroscopy