Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kazazi, Mahdi

  • Google
  • 2
  • 5
  • 91

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Improved laser surface hardening of AISI 4130 low alloy steel with electrophoretically deposited carbon coating38citations
  • 2019Nd:YAG laser hardening of AISI 410 stainless steel: microstructural evaluation, mechanical properties, and corrosion behavior53citations

Places of action

Chart of shared publication
Moradi, Mahmoud
2 / 83 shared
Moghadam, Mojtaba Karami
2 / 9 shared
Karazi, Shadi
1 / 2 shared
Rouzbahani, Fardin
1 / 1 shared
Ghorbani, Davud
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Moradi, Mahmoud
  • Moghadam, Mojtaba Karami
  • Karazi, Shadi
  • Rouzbahani, Fardin
  • Ghorbani, Davud
OrganizationsLocationPeople

article

Improved laser surface hardening of AISI 4130 low alloy steel with electrophoretically deposited carbon coating

  • Moradi, Mahmoud
  • Moghadam, Mojtaba Karami
  • Kazazi, Mahdi
Abstract

In the present study, the laser surface hardening of AISI 4130 was conducted using a continues wave diode laser with a maximum power of 1600 W. To improve the laser surface hardening process, carbon powder is deposited on the sample surface by electrophoretic method. By conducting laser surface hardening at the same input parameters and same heat input, the quality of the hardening is compared; cross sectional geometry of the hardened area (width, depth and entry angle of hardened), micro-hardness and the ferrite phase percentage of hardened layer. Microstructure evaluation of the laser hardened area was performed using optical microscopy. Results indicate that because of increasing the laser absorption in carbon coated samples, hardened area is larger (deeper and wider) and the value of the hardness is more than laser hardening of bare samples. Microstructure analysis indicates that transformation of the retained austenite into martensite due to the fast quenching, lead to the lower ferrite phase in martensitic structure in laser hardened layer and causes higher microhardness. Observations reveal that depth, width, and maximum hardness of laser hardening carbon coated sample without surface melting are 1.150 mm, 9.980 mm, and 762 Vickers, respectively, while for bare sample these values are 0.957 mm, 9.451 mm, and 707 Vickers, respectively. Comparing the results with the furnace hardening heat treatment show that the laser hardening process especially with carbon coated, is more effective and precise than conventional processes.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • Carbon
  • phase
  • steel
  • hardness
  • optical microscopy
  • quenching