People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pellegrino, Antonio
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Strain rate and temperature dependence of short/unidirectional carbon fibre PEEK hybrid compositescitations
- 2024Strain rate and temperature dependence of short/unidirectional carbon fibre PEEK hybrid compositescitations
- 2024A data-driven rate and temperature dependent constitutive model of the compression response of a syntactic foamcitations
- 2024A comprehensive investigation on the temperature and strain rate dependent mechanical response of three polymeric syntactic foams for thermoforming and energy absorption applicationscitations
- 2024A Novel Specimen Design for Multiaxial Loading Experiments at High Strain Ratescitations
- 2023Dynamic response of Advanced Placed Ply compositescitations
- 2023Influence of Strain History on Dynamic Strain Localization and Stress State During High-Rate Tensile Loading of Titanium Alloys:Experiments, Modeling, and Analytical Methodscitations
- 2023A data-driven model of the yield and strain hardening response of commercially pure titanium in uniaxial stresscitations
- 2023Influence of Strain History on Dynamic Strain Localization and Stress State During High-Rate Tensile Loading of Titanium Alloyscitations
- 2022The dependency of compressive response of epoxy syntactic foam on the strain rate and temperature under rigid confinementcitations
- 2022Loading mode and lateral confinement dependent dynamic fracture of a glass ceramic Macorcitations
- 2022Pure shear plastic flow and failure of titanium alloys under quasi-static and dynamic torsional loadingcitations
- 2022Temperature dependent dynamic compressive response of PA66-GF30 composite under constant strain rate multiaxial loadingcitations
- 2022Experimental analysis of the multiaxial failure stress locus of commercially pure titanium at low and high rates of straincitations
- 2021Temperature dependent dynamic strain localization and failure of ductile polymeric rods under large deformationcitations
- 2021Thermomechanical constitutive behaviour of a near α titanium alloy over a wide range of strain ratescitations
- 2021Dynamic necking of a near α titanium alloy at high strain ratescitations
- 2021Measurement of pure shear constitutive relationship from torsion tests under quasi-static, medium, and high strain rate conditionscitations
- 2020Strain rate and temperature dependent strain localization of a near α titanium alloycitations
- 2020Dynamic tensile testing of needle-punched nonwoven fabricscitations
- 2020Rate dependent behaviour and dynamic strain localisation of three novel impact resilient titanium alloyscitations
- 2019A new technique for tensile testing of engineering materials and composites at high strain ratescitations
- 2018Measurements of the effects of pure and salt water absorption on the rate-dependent response of an epoxy matrixcitations
- 2018Effect of particle morphology, compaction, and confinement on the high strain rate behavior of sandcitations
- 2017Bayesian calibration of microCT-based DEM simulations for predicting the effective elastic response of granular materials
- 2017Strain rate dependence of mode II delamination resistance in through thickness reinforced laminated compositescitations
- 2016Effect of strain rate and fibre rotation on the in-plane shear response of ±45° laminates in tension and compression testscitations
- 2016The Dynamic Response of Etnean Sand and the Effect of Its Impingement on Ti-6Al-4 V Alloycitations
- 2015The mechanical response of a syntactic polyurethane foam at low and high rates of straincitations
Places of action
Organizations | Location | People |
---|
article
Experimental analysis of the multiaxial failure stress locus of commercially pure titanium at low and high rates of strain
Abstract
The mechanical response and failure mechanism of commercially pure titanium subjected to combined tension-torsion loading are studied experimentally at strain rates ranging from 10−3 s−1 to 103 s−1. A novel tension-torsion split Hopkinson bar (TTHB) equipped with a high speed camera was utilised during high-rate experiments, while quasi-static tests were conducted using a universal screw-driven machine. The multiaxial dynamic experiments demonstrate the ability of the developed TTHB apparatus to achieve synchronisation of longitudinal and torsional waves upon loading the specimen, to satisfy the dynamic equilibrium of the specimen and to attain constant strain rate loading. The failure envelope of commercially pure titanium was analysed over a wide range of stress states including pure torsion, shear-dominated combined tension-shear, tension-dominated combined tension-shear, and plain tension. The analyses of the loading paths show that these were nearly proportional in terms of strain. The multiaxial failure stress locus was constructed in the normal versus shear stress space from experiments conducted at low and high rates of strain. The Drucker-Prager criterion was employed to approximate the failure envelope and to assess its rate sensitivity. The failure stress locus of commercially pure titanium and its rate dependence are reported for the first time. The TTHB apparatus developed allows the definition of the failure stress locus of aerospace materials directly from experiments and, therefore, the evaluation of the existing failure/yielding criteria.