Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Banik, Arnob

  • Google
  • 3
  • 8
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Flexural behavior and microstructural material properties of sandwich foam core under arctic temperature conditions2citations
  • 2021Low-Velocity Ice Impact Response and Damage Phenomena on Steel and CFRP Sandwich Composite20citations
  • 2020Low Velocity Impact Testing of Ice on Steel and Composite Specimencitations

Places of action

Chart of shared publication
Khan, Mahfujul Haque
1 / 1 shared
Kaiser, Isaiah
1 / 1 shared
Tan, K. T.
1 / 1 shared
Aowad, Mikayla
1 / 1 shared
Zhang, Chao
1 / 17 shared
Khabaz, Fardin
1 / 2 shared
Lazarenko, Daria
1 / 1 shared
Almeida, Ana Clecia Alves
1 / 1 shared
Chart of publication period
2024
2021
2020

Co-Authors (by relevance)

  • Khan, Mahfujul Haque
  • Kaiser, Isaiah
  • Tan, K. T.
  • Aowad, Mikayla
  • Zhang, Chao
  • Khabaz, Fardin
  • Lazarenko, Daria
  • Almeida, Ana Clecia Alves
OrganizationsLocationPeople

article

Low-Velocity Ice Impact Response and Damage Phenomena on Steel and CFRP Sandwich Composite

  • Banik, Arnob
Abstract

This study investigates the low-velocity impact (LVI) response of ice impactor on steel and carbon fiber reinforced polymer (CFRP) sandwich composite. This research explores the effect of impactor's shape and length at different impact velocity by preparing customized conical and cylindrical ice impactors. Ice impactors that are frozen at -12°C for 48 hours are found to have the highest occurrence of partial damage, while ice impactors conditioned at -22°C for 72 hours experienced full damage. Although higher peak force is observed during ice-steel interaction, greater displacement and absorbed energy are evident in ice-composite impact. Results also show that full damage of ice impactor is more prominent for sandwich composite specimens, while partial damage is commonly seen in steel specimens. This is attributed to multiple hits and higher ratio of collision velocity during impact on sandwich composite. Damage type occurrences also vary depending on shape, length, and impact velocity of the ice impactors. Presence of pre-existing cracks during freezing as well as variation in stress level at the impact region influence the strength of the ice impactors. Matrix crack and facesheet dent are observed as the dominant damage mechanism in composite using X-ray micro-computed tomography. Different ice fragmentation processes are also characterized in this study.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • tomography
  • crack
  • strength
  • steel
  • composite
  • impact response