People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wollmann, Tino
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Verfahren zum Herstellen einer akustisch dämpfenden zellularen Struktur, akustisch dämpfende zellulare Struktur und strömungsführendes Bauteil mit mehreren akustisch dämpfenden zellularen Strukturen
- 2023Werkstückbildungsvorrichtung und Verfahren zum Herstellen eines Faserverbundwerkstücks
- 2023Influence of fiber tension during filament winding on the mechanical properties of composite pressure vesselscitations
- 2023Verfahren zur Herstellung eines Triebwerksbauteils aus mindestens einem faserverstärkten Kunststoff
- 2022Experimental investigation of large-scale high-velocity soft-body impact on composite laminatescitations
- 2022Experimental investigation of high strain-rate, large-scale crack bridging behaviour of z-pin reinforced tapered laminatescitations
- 2022Vorrichtung und Verfahren zur Durchführung von Messungen an rotierenden Objekten
- 2021Numerical buckling analysis of hybrid honeycomb cores for advanced helmholtz resonator linerscitations
- 2021Spatially Resolved Experimental Modal Analysis on High-Speed Composite Rotors Using a Non-Contact, Non-Rotating Sensor.
- 2021Design and testing of polar-orthotropic multi-layered composites under rotational loadcitations
- 2021Diffraction grating sensor for damage and modal analysis of fast rotating composite structures
- 2021Spatially Resolved Experimental Modal Analysis on High-Speed Composite Rotors Using a Non-Contact, Non-Rotating Sensorcitations
- 2020Beugungsgitterbasierte Schädigungs-, Eigenfrequenz- und Eigenformmessung an schnelldrehenden Faserverbundrotoren
- 2020Non-destructive testing of a rotating glass-fibre-reinforced polymer disc by swept source optical coherence tomographycitations
- 2020Diffraction grating based measurement of the modal behavior of fast rotating composite discs (Conference Presentation)
- 2019Optical strain measurements on fast moving fiber reinforced polymer rotors using diffraction gratingscitations
- 2018Thermoplastic fibre metal laminates: Stiffness properties and forming behaviour by means of deep drawingcitations
- 20183D-DynRoCo - Excitation and vibration analysis of rotating structures
- 2018Entwicklung eines kombinierten numerisch-experimentellen Ansatzes zur 3D Erfassung des Schwingungsverhaltens von rotierenden Komponenten
- 2017Effiziente Mischbauweisen für Leichtbau-Karosserien - LEIKA
- 2016Forming of carbon fibre-reinforced metal laminates in combination with injection moulding
- 2015Design of composite compressor blades with focus on the vibration behaviour
- 2014Carbon fibre-reinforced metal laminates – An alternative to aluminium in vehicle construction
Places of action
Organizations | Location | People |
---|
article
Experimental investigation of large-scale high-velocity soft-body impact on composite laminates
Abstract
High-performance aerospace laminated composite structures manufactured from carbon-fibre prepreg are very susceptible to delamination failure under in-flight impact conditions. Much testing has been conducted at small length scales and quasi-static strain-rates to characterise the delamination performance of different material systems and loading scenarios. Testing at this scale and strain-rate is not representative of the failure conditions experienced by a laminate in a real impact event. Full-scale testing has also been conducted, but much of this is not in the open literature due to intellectual property constraints. Testing at this scale is also prohibitively expensive and involves complex failure mechanisms that cause difficulty in the analysis of associated failure behaviour. A novel test is presented which provides a simple, affordable alternative to full-scale testing but which invokes failure at sufficient scale and velocity to be representative of real component failure. This test design is experimentally validated through a series of soft-body gelatine impact tests using a light gas-gun facility. A fractographic analysis using scanning-electron microscopy was undertaken to examine microscopic failure behaviour, showing a possible reduction in crack mode-ratio during propagation.