People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Soares, Guilherme Corrêa
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024On the grain level deformation of BCC metals with crystal plasticity modelingcitations
- 2024Design and Application of a Miniature Pneumatic Bellows Loading Device for In-Situ Tensile Testing inside the Scanning Electron Microscopecitations
- 2024On the use of an induced temperature gradient and full-field measurements to investigate and model the thermomechanical behaviour of an austenitic stainless steel 316citations
- 2023Microscale Strain Localizations and Strain-Induced Martensitic Phase Transformation in Austenitic Steel 301LN at Different Strain Ratescitations
- 2023In situ damage characterization of CFRP under compression using high-speed optical, infrared and synchrotron X-ray phase-contrast imagingcitations
- 2023In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Rangecitations
- 2023Effects of strain rate and adiabatic heating on mechanical behavior of medium manganese Q&P steelscitations
- 2022High-Speed Thermal Mapping and Impact Damage Onset in CFRP and FFRP
- 2022Synchronized full-field strain and temperature measurements of commercially pure titanium under tension at elevated temperatures and high strain ratescitations
- 2022Impact and fatigue tolerant natural fibre reinforced thermoplastic composites by using non-dry fibrescitations
- 2022Effects of strain rate on strain-induced martensite nucleation and growth in 301LN metastable austenitic steelcitations
- 2021The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compressioncitations
- 2021Adiabatic heating and damage onset in a pultruded glass fiber reinforced composite under compressive loading at different strain rates.citations
- 2021Thermomechanical Behavior of Steels in Tension Studied with Synchronized Full-Field Deformation and Temperature Measurementscitations
- 2020Effects of Dynamic Strain Aging on Strain Hardening Behavior, Dislocation Substructure, and Fracture Morphology in a Ferritic Stainless Steelcitations
- 2019Adiabatic Heating of Austenitic Stainless Steels at Different Strain Ratescitations
- 2019Effects of Adiabatic Heating and Strain Rate on the Dynamic Response of a CoCrFeMnNi High-Entropy Alloycitations
- 2018Influence of Strain Amplitude on the Functional Properties and Aging at Room Temperature of a Superelastic NiTi Alloy
- 2017Effects of pseudoelastic cycling under different temperatures on physical and mechanical properties of a NiTi alloycitations
- 2017Influence of temperature on mechanical properties, fracture morphology and strain hardening behavior of a 304 stainless steelcitations
- 2017Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steelscitations
- 2016Influence of Strain Rate on the Functional Behavior of a NiTi Alloy Under Pseudoelastic Trainingcitations
Places of action
Organizations | Location | People |
---|
article
The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compression
Abstract
This work presents an investigation on the effects of adiabatic heating and strain rate on the dynamic compressive response of titanium, iron, copper, and tin. The high strain rate tests were carried out with a Split Hopkinson Pressure Bar (SHPB) and the low strain rate tests with a servohydraulic testing machine. The temperature increase of the specimens during deformation was measured with high speed infrared thermography (IRT). The results show that all the investigated materials have positive strain rate sensitivity and temperature increases of up to 65 °C were observed in the high strain rate experiments (500–3100 s−1). Adiabatic heating in all investigated materials increased with strain rate. The temperature increase at the strain rate of 1 s−1 clearly diminished the strain hardening rate of iron and titanium but was seemingly insufficient to impact the mechanical behavior of copper and tin. The Taylor–Quinney coefficients (βint and βdiff) were found to be strain and strain rate dependent. At higher strain rates (1200–3100 s−1), the integral βint was smaller in the beginning of the test (0.2 to 0.7) and increased to approximately 0.8–0.9 at larger plastic strains. The differential βdiff comprised gaussian curves as a function of strain whose maximum values were from 0.9 to 1.2 for the investigated materials. Tin had lower βint and βdiff with higher strain hardening rates, while copper had a higher βint and βdiff with a low strain hardening rate throughout the high strain rate tests. These results indicate that copper had a more stable microstructure during deformation and converted most of the applied plastic work into heat, while tin had a faster evolving microstructure which stored more plastic work in its microstructure during plastic deformation. Furthermore, this suggests that βint and βdiff can be used as parameters to investigate the stability and the microstructural evolution of materials under high strain rate plastic deformation. βdiff is more appropriate to describe the instantaneous ...