People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sluys, Bert
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Geometric effects on impact mitigation in architected auxetic metamaterialscitations
- 2024Modeling of progressive high-cycle fatigue in composite laminates accounting for local stress ratioscitations
- 2023A numerical framework for simulating progressive failure in composite laminates under high-cycle fatigue loadingcitations
- 2022Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method.citations
- 2022Modelling of capillary water absorption in sound and cracked concrete using a dual-lattice approachcitations
- 2022Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method. Part IIcitations
- 2021Calcium phosphate cement reinforced with poly (vinyl alcohol) fiberscitations
- 2021A cohesive XFEM model for simulating fatigue crack growth under various load conditionscitations
- 2020A thermo-hydro-mechanical model for energy piles under cyclic thermal loadingcitations
- 2020An experimental and numerical investigation of sphere impact on alumina ceramiccitations
- 2019A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced compositescitations
- 2019Simulating brittle and ductile response of alumina ceramics under dynamic loadingcitations
- 2019Dynamic characterization of adobe in compressioncitations
- 2019A dispersive homogenization model for composites and its RVE existencecitations
- 2019A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloadingcitations
- 2019Efficient micromechanical analysis of fiber-reinforced composites subjected to cyclic loading through time homogenization and reduced-order modelingcitations
- 2019Dynamic simulation of masonry materials at different loading velocities using an updated damage delay algorithm of regularization
- 2018Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminatecitations
- 2018Deformation to fracture evolution of a flexible polymer under split Hopkinson pressure bar loadingcitations
- 2018A viscosity regularized plasticity model for ceramicscitations
- 2017Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine bladescitations
- 2017Thick-level-set modeling of the dynamic double cantilever beam test
- 2017A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage modelcitations
- 2017On the modelling of mixed-mode discrete fracturecitations
- 2017Combined experimental/numerical investigation of directional moisture diffusion in glass/epoxy compositescitations
- 2016Simulation of dynamic behavior of quasi-brittle materials with new rate dependent damage modelcitations
- 2016Compressive response of multiple-particles-polymer systems at various strain ratescitations
Places of action
Organizations | Location | People |
---|
article
An experimental and numerical investigation of sphere impact on alumina ceramic
Abstract
<p>In this study, the impact of a steel spherical projectile on an alumina ceramic is considered. New experimental and numerical results are presented and analysed. Numerical results are obtained using the Finite Element Method and the upgraded viscosity regularized Johnson-Holmquist-2 constitutive model to describe the ceramic material behaviour. First, a short investigation is done using 2d Finite Element simulations to establish a proper numerical framework. Second, the numerical framework is extended to 3d and experimental results are used to validate the framework and the ceramic material model. This shows that all relevant ceramic failure mechanisms are captured correctly and the framework and model can be used to simulate sphere impact on ceramic material. Third, the simulations are used to analyse the failure processes in the ceramic material in more detail. Here the focus lies in obtaining information which can currently not be retrieved from experiments. Timing and interaction of propagating conical and radial cracks are investigated and corroborate with the typical failure mechanisms observed in sphere impact on ceramic material.</p>