People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Elmahdy, Ahmed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Impact-dynamic properties of aromatic hyperbranched polyester/RTM6 epoxy nanocompositescitations
- 2022In-depth analysis of the high strain rate compressive behavior of RTM6 epoxy using digital image correlationcitations
- 2021Fracture mechanisms in flat and cylindrical tensile specimens of TRIP-TWIP β-metastable Ti-12Mo alloycitations
- 2021Effect of strain rate and silica filler content on the compressive behavior of RTM6 epoxy-based nanocompositescitations
- 2020A cohesive-based method to bridge the strain rate effect and defects of RTM-6 epoxy resin under tensile loadingcitations
- 2020Mechanical behavior of basalt and glass textile composites at high strain rates : a comparisoncitations
- 2020Comparison between the mechanical behavior of woven basalt and glass epoxy composites at high strain ratescitations
- 2020Aromatic Hyperbranched Polyester/RTM6 Epoxy Resin for EXTREME Dynamic Loading Aeronautical Applicationscitations
- 2019Evaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditionscitations
- 2019Tensile behavior of woven basalt fiber reinforced composites at high strain ratescitations
- 2018Effect of silica nanoparticles on the compressive behavior of RTM6 epoxy resin at different strain rates
- 2018Tensile behavior of basalt fiber reinforced composites at high strain rates
- 2018The use of 2D and 3D high-speed digital image correlation in full field strain measurements of composite materials subjected to high strain ratescitations
- 2018Compressive behavior of epoxy resin filled with silica nanoparticles at high strain rate
- 2018The Use of 2D and 3D High-Speed Digital Image Correlation in Full Field Strain Measurements of Composite Materials Subjected to High Strain Ratescitations
- 2017High strain rate testing of fibre-reinforced composites
Places of action
Organizations | Location | People |
---|
article
Evaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditions
Abstract
Hydrogen (H) induced mechanical degradation is studied in DP steel by performing tensile tests under static and dynamic conditions. Tensile specimens were electrochemically H charged and tensile tests were done ex-situ after charging. Different H contents were charged into the samples by modifying the current density. The strain rate is increased from static (1.67*10(-2) and 1.67 s(-1)) to dynamic (450 and 900 s(-1)) conditions to verify the effect of H diffusivity during the tensile tests on the hydrogen embrittlement (HE) susceptibility. Therefore, a reproducible methodology was established by using a standardized tensile machine for static testing and split Hopkinson bar experiments for dynamic conditions. The HE degree increased with current density due to higher amount of H, as confirmed by melt extraction. The HE% also increased with slower strain rates since H was able to diffuse to a crack tip, hence accelerating failure. Even at the highest strain rate (900 s(-1)), the material lost about 10% of its ductility due to H present in the sample and not because of H diffusion during the test. This was concluded since H induced brittle failure initiated at the edges of the samples at slow strain rates. Though at a strain rate of 1.67 s(-1), fracture initiated in a ductile way from the center similarly as for tests performed without charging. Fractographic visualization of the fracture surfaces revealed an embrittled central line when charged with H, which evolved into a major crack. MnS inclusions were found in this central line accounting for the H induced crack initiation.