Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wight, Gavin

  • Google
  • 1
  • 4
  • 137

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Numerical simulation of ultra high performance fibre reinforced concrete panels subjected to blast loading137citations

Places of action

Chart of shared publication
Schleyer, Graham
1 / 3 shared
Begg, David
1 / 3 shared
Mao, Lei
1 / 1 shared
Barnett, Stephanie Jayne
1 / 19 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Schleyer, Graham
  • Begg, David
  • Mao, Lei
  • Barnett, Stephanie Jayne
OrganizationsLocationPeople

article

Numerical simulation of ultra high performance fibre reinforced concrete panels subjected to blast loading

  • Schleyer, Graham
  • Wight, Gavin
  • Begg, David
  • Mao, Lei
  • Barnett, Stephanie Jayne
Abstract

In the last few decades, several full-scale blast tests have been performed to study the behaviour of ultra high performance fibre reinforced concrete (UHPFRC). However, only limited research has been devoted to simulate performance of UHPFRC subjected to blast loading. This paper presents a numerical investigation on the performance of UHPFRC under blast loading with a concrete material model which takes into account the strain rate effect.Furthermore, the model is modified to better express the strain softening of UHPFRC material. The performance of the numerical models is verified by comparing modelling resultsto the data from corresponding full scale blast tests.With the verified models, parametric studies are also carried out to investigate the effect of steel reinforcement and steel fibre in increasing UHPFRC resistance to blast loading.

Topics
  • impedance spectroscopy
  • simulation
  • steel