People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aili, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Tuning Polybenzimidazole-Derived Crosslinked Interpenetrating Network Membranes for Vanadium Redox Flow Batteriescitations
- 2023Tuning Polybenzimidazole-Derived Crosslinked Interpenetrating Network Membranes for Vanadium Redox Flow Batteriescitations
- 2022Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cellscitations
- 2022Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cellscitations
- 2020Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysiscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolidescitations
- 2019Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cellscitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2014Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells
- 2014Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cellscitations
- 2011Proton conducting polymeric materials for hydrogen based electrochemical energy conversion technologies
Places of action
Organizations | Location | People |
---|
article
Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cells
Abstract
The use of thin polybenzimidazole membranes in high-temperature polymer electrolyte membrane fuel cells is explored. Membranes in thickness of 10–40 μm are prepared, doped and characterized, including fuel cell test. High molecular weight polymers enable fabrication of membranes as thin as 10 μm with sufficient mechanical strength. The thin membranes, upon acid doping, exhibit comparable conductivity and hence decreased ohmic resistance. Membrane electrode assemblies with thin membranes down to 10 μm show slightly lower open-circuit voltages than that for reference 40 μm but all above 0.97 V. This is in good agreement with the hydrogen permeability measurements, which show a value around 10<sup>−12</sup> mol cm<sup>−1</sup> s<sup>−1</sup> bar<sup>−1</sup>, corresponding to a crossover current density of <1 mA cm<sup>−2</sup>. The acid transferred from the membrane to the catalyst layer seems constant, as the iR-free polarization plots are nearly the same for membranes of varied thicknesses. The acid remaining in the membrane after the break-in period is estimated, showing an acid inventory issue when thin membranes are used. This is verified by using the membranes of higher acid doping levels.