People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cleemann, Lars Nilausen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cellscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2018Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameterscitations
- 2017Coupling between creep and redox behavior in nickel - yttria stabilized zirconia observed in-situ by monochromatic neutron imagingcitations
- 2017Coupling between creep and redox behavior in nickel - yttria stabilized zirconia observed in-situ by monochromatic neutron imagingcitations
- 2013Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranescitations
- 2003Preparation, Study and Modification of Nanometer-Scale Flat TiO2 Surfaces by Electrochemistry and AFM Techniques
- 2003Preparation, Study and Modification of Nanometer-Scale Flat TiO2 Surfaces by Electrochemistry and AFM Techniques
Places of action
Organizations | Location | People |
---|
article
Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cells
Abstract
The use of thin polybenzimidazole membranes in high-temperature polymer electrolyte membrane fuel cells is explored. Membranes in thickness of 10–40 μm are prepared, doped and characterized, including fuel cell test. High molecular weight polymers enable fabrication of membranes as thin as 10 μm with sufficient mechanical strength. The thin membranes, upon acid doping, exhibit comparable conductivity and hence decreased ohmic resistance. Membrane electrode assemblies with thin membranes down to 10 μm show slightly lower open-circuit voltages than that for reference 40 μm but all above 0.97 V. This is in good agreement with the hydrogen permeability measurements, which show a value around 10<sup>−12</sup> mol cm<sup>−1</sup> s<sup>−1</sup> bar<sup>−1</sup>, corresponding to a crossover current density of <1 mA cm<sup>−2</sup>. The acid transferred from the membrane to the catalyst layer seems constant, as the iR-free polarization plots are nearly the same for membranes of varied thicknesses. The acid remaining in the membrane after the break-in period is estimated, showing an acid inventory issue when thin membranes are used. This is verified by using the membranes of higher acid doping levels.