People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kostylev, Mikhail
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Low‐Damping Spin‐Wave Transmission in YIG/Pt‐Interfaced Structurescitations
- 2022Iron oxide-Palladium core-shell nanospheres for ferromagnetic resonance-based hydrogen gas sensingcitations
- 2022Application of a Microfabricated Microwave Resonator in a Co-Pd-Based Magnetic Hydrogen-Gas Sensorcitations
- 2020Manipulation of the inverse spin Hall effect in palladium by absorption of hydrogen gascitations
- 2020Spin-wave relaxation by Eddy Currents in Y3Fe5 O12/Pt bilayers and a way to suppress itcitations
- 2019Observation of enhanced magnetic anisotropy in PLD YIG thin film on GGG (1 1 1) substratecitations
- 2018Cavity magnon polaritons with lithium ferrite and three-dimensional microwave resonators at millikelvin temperaturescitations
- 2018Effect of Annealing on the Structural and FMR Properties of Epitaxial YIG Thin Films Grown by RF Magnetron Sputteringcitations
- 2016Elastic versus inelastic spin-polarized electron scattering from a ferromagnetic surfacecitations
- 2015Rigorous numerical study of strong microwave photon-magnon coupling in all-dielectric magnetic multilayerscitations
- 2014Microwave eddy-current shielding effect in metallic films and periodic nanostructures of sub-skin-depth thicknesses and its impact on stripline ferromagnetic resonance spectroscopycitations
- 2013Non-reciprocity of dipole-exchange spin waves in thin ferromagnetic filmscitations
- 2009A current-controlled, dynamic magnonic crystalcitations
- 2008Brillouin light scattering observation of the transition from the superparamagnetic to the superferromagnetic state in nanogranular, (SiO 2)Co filmscitations
- 2008Spin-wave modes in granular superferromagnetic (SiO2)Co/GaAs films observed using Brillouin light scatteringcitations
Places of action
Organizations | Location | People |
---|
article
Iron oxide-Palladium core-shell nanospheres for ferromagnetic resonance-based hydrogen gas sensing
Abstract
<p>Interfaces of ferromagnetic transition metals such as Iron, Cobalt, and Nickel with non-magnetic palladium are of interest due to their unique magnetic and spintronic properties. These interfaces enable ferromagnetic resonance (FMR) based sensing of hydrogen gas. In the present work, we synthesized Fe<sub>3</sub>O<sub>4</sub>–Pd core-shell nanospheres via a one-pot synthesis method using the thermal decomposition of Fe<sup>3+</sup> acetylacetonate in the presence of a reducing agent to produce the Fe<sub>3</sub>O<sub>4</sub> core, followed by the reduction of a Pd<sup>2+</sup> precursor to form the pure Pd shell. We found that our in-situ synthesized core-shell nanostructure is magnetically active and shows excellent H<sub>2</sub> gas sensing properties. The effect of reversible hydrogen gas absorption on the magnetism of Fe<sub>3</sub>O<sub>4</sub>–Pd core-shell nanospheres was investigated. The hydrogen-induced ferromagnetic-resonance (FMR) peak shift amounted to 30% of the peak linewidth for the virgin state of the sample. In addition, in the presence of hydrogen gas, we observed a fully reversible decrease in the FMR peak linewidth by about two times. This was accompanied by a nearly doubling of the FMR peak height. Response and recovery times of about 2 and 50 s, respectively, were extracted from the measurements. All the data was collected using a mix of just 3% hydrogen in a nitrogen carrier gas.</p>