People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
El-Kharouf, Ahmad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Experimental and Numerical Evaluation of Polymer Electrolyte Fuel Cells with Porous Foam Distributor
- 2022Evaluation of inkjet-printed spinel coatings on standard and surface nitrided ferritic stainless steels for interconnect application in solid oxide fuel cell devicescitations
- 2022Optimization of a ScCeSZ/GDC bi-layer electrolyte fabrication process for intermediate temperature solid oxide fuel cellscitations
- 2021Magnetically modified electrocatalysts for oxygen evolution reaction in proton exchange membrane (PEM) water electrolyzerscitations
- 2020Electrochemical performance and carbon resistance comparison between Sn, Cu, Ag, and Rh-doped Ni/ScCeSZ anode SOFCs operated by biogas
- 2020Formulation of Spinel based Inkjet Inks for Protective Layer Coatings in SOFC Interconnectscitations
- 2018Evaluation of Inkjet Printed Protective Layer Coatings for SOFC Interconnects
Places of action
Organizations | Location | People |
---|
article
Magnetically modified electrocatalysts for oxygen evolution reaction in proton exchange membrane (PEM) water electrolyzers
Abstract
Green hydrogen production can only be realized via water electrolysis using renewable energy sources. Proton exchange membrane water electrolyzers have been demonstrated as the technology of choice for mass production of green hydrogen due to their scalability and potential high efficiency. However, the technology is still relatively expensive due to the catalyst materials cost and operational limitations due to mass transfer and activation polarizations. During the oxygen evolution reaction, oxygen bubbles stick to the electrode surface and this causes a low reaction rate and high mass transfer losses. In this study, the commonly used electrocatalyst for oxygen evolution reactions; IrO2, is modified by introducing magnetic Fe3O4 to achieve greater bubble separation at the anode during operation. The prepared composite catalysts were characterized using Scanning Electron Microscope, Energy Dispersive X-Ray Analysis, X-Ray Powder Diffraction, X-ray photoelectron spectroscopy and Brunauer–Emmett–Teller characterization methods. The modified composite electrocatalyst samples are magnetized to investigate the magnetic field effect on oxygen evolution reaction performance in proton exchange membrane water electrolyzers. 90% IrO2 - 10% Fe3O4 and 80% IrO2 - 20% Fe3O4 samples are tested via linear sweep voltammetry both ex-situ and in-situ in a proton exchange membrane water electrolyzer single cell. According to the linear sweep voltammetry tests, the magnetization of the 80% IrO2 - 20% Fe3O4 sample resulted in 15% increase in the maximum current density. Moreover, the single cell electrolyzer test showed a four-fold increase in current density by employing the magnetized 80% IrO2 - 20% Fe3O4 catalyst.