People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Virta, R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Intriguing electrochemistry in low-temperature single layer ceramic fuel cells based on CuFe2O4
Abstract
<p>A composite of CuFe<sub>2</sub>O<sub>4</sub> and Gd-Sm co-doped CeO<sub>2</sub> is studied for a single layer ceramic fuel cell application. In order to optimize the cell performance, the effects of sintering temperatures (600 °C, 700 °C, 800 °C, 900 °C and 1000 °C) were investigated for the fabrication of the cells. It was found that the cells sintered at 700 °C outperformed other cells with a maximum peak power density of 344 mW/cm<sup>2</sup> at 550 °C. The electrochemical impedance spectroscopy analysis on the best cell revealed significant ohmic losses (0.399 Ω cm<sup>2</sup>) and polarization losses (0.174 Ω cm<sup>2</sup>) in the cell. The HR-TEM and SEM gave microstructural information of the cell. The HT-XRD spectra showed the crystal structures in different sintering temperatures. The cell performance was stable and the composite material did not degrade during an 8 h stability test under open-circuit condition. This study opens up new avenues for the exploration of this nanocomposite material for the low temperature single component ceramic fuel cell research.</p>