People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Madeira, Lm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Fe-containing carbon-coated monoliths prepared by CVD in gaseous toluene abatement-parametric analysis of the Fenton processcitations
- 2022Gaseous toluene abatement by the heterogeneous Fenton-like process using iron/carbon-coated monolith as catalyst: Proof of conceptcitations
- 2022Unravelling the relation between processed crude oils and the composition of spent caustic effluents as well as the respective economic impactcitations
- 2019Low temperature glycerol steam reforming over a Rh-based catalyst combined with oxidative regenerationcitations
- 2016Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems - A reviewcitations
- 2014Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst-Kinetics with a model based on the Fermi's equationcitations
- 2014Removal of paraquat pesticide with Fenton reaction in a pilot scale water systemcitations
- 2014Boehmite-phenolic resin carbon molecular sieve membranes-Permeation and adsorption studiescitations
- 2013Influence of the iron precursor in the preparation of heterogeneous Fe/activated carbon Fenton-like catalystscitations
- 2013Drinking water and biofilm disinfection by Fenton-like reactioncitations
- 2010Enhancing the production of hydrogen via water-gas shift reaction using Pd-based membrane reactorscitations
- 2007Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalystscitations
- 2005Proton electrolyte membrane properties and direct methanol fuel cell performance II. Fuel cell performance and membrane properties effectscitations
- 2005Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperaturescitations
- 2002New evidences of redox mechanism in n-butane oxidative dehydrogenation over undoped and Cs-doped nickel molybdatescitations
Places of action
Organizations | Location | People |
---|
article
Low temperature glycerol steam reforming over a Rh-based catalyst combined with oxidative regeneration
Abstract
A Rh on alumina catalyst was tested for glycerol steam reforming at 673 K, 4.5 bar and molar water/glycerol feed ratio (WGFR) of 19. Even though a conversion of glycerol into carbon-containing gaseous products of around 73% was observed at the beginning of the reaction, a progressive deactivation was noticed afterwards, less than 40% of glycerol being converted into carbon-containing gas products after 4 h of time-on-stream. On the other hand, the total glycerol conversion remained above 99% during the same period, thus indicating the increasing formation of coke and/or liquid products over time. The total glycerol conversion started to decrease more pronouncedly only after 6 h, reaching a value of approximately 92% after 13 h. SEM/EDS analysis of the used catalyst showed the presence of carbon deposits, Raman spectroscopy evidencing the dominant presence of amorphous carbon structures. Therefore, oxidative regeneration with air at 773 K was carried out. This temperature proved to be enough to gasify all removable coke (according to temperature-programmed oxidation results). After regeneration, almost complete recovery of catalytic performance was observed. In fact, maximum H-2 yields between 2.1 and 2.6 mol.mol(fed glycerol)(-1) were observed for the reaction cycles performed with intermediate oxidative regenerations. By combining glycerol steam reforming with periodic oxidative regeneration of the catalyst, superior average performance, compared to the case where no oxidative regeneration was used, was attained.