Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jokiranta, R.

  • Google
  • 1
  • 3
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Remarkable ionic conductivity and catalytic activity in ceramic nanocomposite fuel cells19citations

Places of action

Chart of shared publication
Asghar, M. I.
1 / 4 shared
Jouttijärvi, S.
1 / 3 shared
Lund, Peter D.
1 / 56 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Asghar, M. I.
  • Jouttijärvi, S.
  • Lund, Peter D.
OrganizationsLocationPeople

article

Remarkable ionic conductivity and catalytic activity in ceramic nanocomposite fuel cells

  • Asghar, M. I.
  • Jouttijärvi, S.
  • Jokiranta, R.
  • Lund, Peter D.
Abstract

<p>Although ceramic nanocomposite fuel cells (CNFCs) have attracted the attention of the fuel cell community due to their low operating temperature (&lt;600 °C), often the performance of the cells is limited due to the low ionic conductivity of the electrolyte and the sluggish reaction kinetics at the electrodes. This results in high ohmic and charge transfer losses in the cell performance. Here we report nanocomposite electrolyte (GDC-NLC) and electrodes (NiO-GDC-NLC and LSCF-GDC-NLC as anode and cathode respectively) with enhanced ionic conductivity and catalytic activity respectively, which significantly improve the ionic transport in the electrolyte layer (ohmic losses ≈ 0.23 Ω cm<sup>2</sup>) and the reaction kinetics at the electrodes (polarization losses ≈ 0.63 Ω cm<sup>2</sup>). Microstructural and phase changes in the materials were characterized with X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry to understand the mechanisms in the cells. Our button fuel cell produced an outstanding performance of 1.02 W/cm<sup>2</sup> at 550 °C.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • differential scanning calorimetry
  • ceramic