People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rochat, Sebastien
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Investigation of the Dynamic Behaviour of H 2 and D 2 in a Kinetic Quantum Sieving Systemcitations
- 2024Removal of antiretroviral drugs from wastewater using activated macadamia nutshellscitations
- 2024Green and sustainable devulcanization of ground tire rubber using choline chloride–urea deep eutectic solventcitations
- 2024Investigation of the Dynamic Behaviour of H 2 and D 2 in a Kinetic Quantum Sieving Systemcitations
- 2023Hydrogen Sorption on Microporous Carbon/Sulfur Nanocomposite Systemscitations
- 2023Properties and Curing Kinetics of a Processable Binary Benzoxazine Blendcitations
- 2021Solvent sorption-induced actuation of composites based on a polymer of intrinsic microporositycitations
- 2021Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporositycitations
- 2018Polymer of Intrinsic Microporosity (PIM-7) Coating Affects Triphasic Palladium Electrocatalysiscitations
- 2017AFM imaging and nanoindentation of polymer of intrinsic microporosity PIM-1citations
Places of action
Organizations | Location | People |
---|
article
AFM imaging and nanoindentation of polymer of intrinsic microporosity PIM-1
Abstract
Polymers of intrinsic microporosity (PIMs) have promising gas adsorption properties for potential applications such as incorporation into high-pressure hydrogen storage tanks in an effort to increase the storage capacity or decrease the operating pressure. Such applications require detailed mechanical characterisation and determination of the structure-properties relationships to enable optimisation of the interface between the polymer and the tank. In this study, we show that Atomic Force Microscopy (AFM) nanoindentation can be used to determine the elastic modulus of cast PIM-1 films and that this property is depth-dependent. Average values of elastic modulus obtained experimentally were 1.87 GPa and are compared with elastic tensile modulus and storage tensile modulus obtained in previous studies. In addition, Scanning Electron Microscopy (SEM) and AFM imaging was performed to investigate the surface structure of the cast PIM-1 film, which has been shown to be highly granular. ; Polymers of intrinsic microporosity (PIMs) have promising gas adsorption properties for potential applications such as incorporation into high-pressure hydrogen storage tanks in an effort to increase the storage capacity or decrease the operating pressure. Such applications require detailed mechanical characterisation and determination of the structure-properties relationships to enable optimisation of the interface between the polymer and the tank. In this study, we show that Atomic Force Microscopy (AFM) nanoindentation can be used to determine the elastic modulus of cast PIM-1 films and that this property is depth-dependent. Average values of elastic modulus obtained experimentally were 1.87 GPa and are compared with elastic tensile modulus and storage tensile modulus obtained in previous studies. In addition, Scanning Electron Microscopy (SEM) and AFM imaging was performed to investigate the surface structure of the cast PIM-1 film, which has been shown to be highly granular.