People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burrows, Andrew D.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Vanillin cross-linked chitosan film with controlled release of green tea polyphenols for active food packagingcitations
- 2022Coupling Postsynthetic High-Temperature Oxidative Thermolysis and Thermal Rearrangements in Isoreticular Zinc MOFscitations
- 2022Coupling Postsynthetic High-Temperature Oxidative Thermolysis and Thermal Rearrangements in Isoreticular Zinc MOFscitations
- 2021Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporositycitations
- 2019Polymer of Intrinsic Microporosity (PIM-7) Coating Affects Triphasic Palladium Electrocatalysiscitations
- 2018Polymer of intrinsic microporosity (PIM-7) coating affects triphasic palladium electrocatalysiscitations
- 2017Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applicationscitations
- 2017AFM imaging and nanoindentation of polymer of intrinsic microporosity PIM-1citations
- 2015Manufacturing of metal-organic framework monoliths and their application in CO 2 adsorptioncitations
- 2015PIM-MOF Composites for Use in Hybrid Hydrogen Storage Tanks
- 2015Manufacturing of metal-organic framework monoliths and their application in CO2 adsorptioncitations
- 2015The synthesis and characterisation of coordination and hydrogen-bonded networks based on 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acidcitations
- 2013Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in porescitations
- 2013Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in porescitations
- 2008Subtle structural variation in copper metal-organic frameworks: Syntheses, structures, magnetic properties and catalytic behaviourcitations
- 2006Incorporation of dyes into hydrogen-bond networks: The structures and properties of guanidinium sulfonate derivatives containing ethyl orange and 4-aminoazobenzene-4 '-sulfonate
- 2003The influence of functional group orientation on the structure of zinc 1,1,4-trimethylthiosemicarbazide dicarboxylates: Probing the limits of crystal engineering strategies
Places of action
Organizations | Location | People |
---|
article
AFM imaging and nanoindentation of polymer of intrinsic microporosity PIM-1
Abstract
Polymers of intrinsic microporosity (PIMs) have promising gas adsorption properties for potential applications such as incorporation into high-pressure hydrogen storage tanks in an effort to increase the storage capacity or decrease the operating pressure. Such applications require detailed mechanical characterisation and determination of the structure-properties relationships to enable optimisation of the interface between the polymer and the tank. In this study, we show that Atomic Force Microscopy (AFM) nanoindentation can be used to determine the elastic modulus of cast PIM-1 films and that this property is depth-dependent. Average values of elastic modulus obtained experimentally were 1.87 GPa and are compared with elastic tensile modulus and storage tensile modulus obtained in previous studies. In addition, Scanning Electron Microscopy (SEM) and AFM imaging was performed to investigate the surface structure of the cast PIM-1 film, which has been shown to be highly granular. ; Polymers of intrinsic microporosity (PIMs) have promising gas adsorption properties for potential applications such as incorporation into high-pressure hydrogen storage tanks in an effort to increase the storage capacity or decrease the operating pressure. Such applications require detailed mechanical characterisation and determination of the structure-properties relationships to enable optimisation of the interface between the polymer and the tank. In this study, we show that Atomic Force Microscopy (AFM) nanoindentation can be used to determine the elastic modulus of cast PIM-1 films and that this property is depth-dependent. Average values of elastic modulus obtained experimentally were 1.87 GPa and are compared with elastic tensile modulus and storage tensile modulus obtained in previous studies. In addition, Scanning Electron Microscopy (SEM) and AFM imaging was performed to investigate the surface structure of the cast PIM-1 film, which has been shown to be highly granular.