People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mirzaeian, Mojtaba
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2022Development of functional materials for the removal of heavy metals from industrial waste waters
- 2022Graphene synthesis techniques and environmental applicationscitations
- 2022Structural tuneability and electrochemical energy storage applications of resorcinol-formaldehyde-based carbon aerogelscitations
- 2020Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/activated carbon aerogels based electrode materials for electrochemical capacitorscitations
- 2020Pseudocapacitive effect of carbons doped with different functional groups as electrode materials for electrochemical capacitorscitations
- 2019Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applicationscitations
- 2018Synthesis and characterisation of control porosity resorcinol formaldehyde based carbon aerogels under different conditions
- 2018Effect of nitrogen doping on physical and electrochemical properties of resorcinol / formaldehyde based carbons
- 2017Synthesis and electrochemical properties of highly porous nitrogen-doped carbon for improved supercapacitor performance
- 2017Improving the functionality of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications
- 2017Electrochemical performance of controlled porosity resorcinol/formaldehyde based carbons as electrode materials for supercapacitor applicationscitations
- 2015The Effect of Growth Conditions on the Surface Energy, Optical Properties and Saline Corrosion Resistance of Amorphous Chromium Oxide Thin Films Prepared by Reactive Magnetron Sputtering
- 2010Study of structural change in Wyodak coal in high pressure CO2 by small-angle neutron scatteringcitations
- 2009The control of porosity at nano scale in resorcinol formaldehyde carbon aerogelscitations
- 2009Preparation of controlled porosity carbon-aerogels for energy storage in rechargeable lithium oxygen batteriescitations
- 2008Thermodynamical studies of irreversible sorption of CO2 by Wyodak coal
- 2007High capacity carbon based electrodes for lithium/oxygen batteries
Places of action
Organizations | Location | People |
---|
article
Electrochemical performance of controlled porosity resorcinol/formaldehyde based carbons as electrode materials for supercapacitor applications
Abstract
Controlled porosity carbons aerogels were synthesized by sol–gel polycondensation of resorcinol (R) and formaldehyde (F) using sodium-carbonate as the catalyst (C). The Effect of variation of R/C ratio and carbonization temperature on the porous structure of resultant gels and carbons was investigated by characterizing the porous structure of the materials using nitrogen adsorption–desorption measurements at 77 K. It was shown that carbons with surface areas ranging between 537 and 687 m<sup>2</sup>g<sup>−1</sup> and average pore size in the range of 1.80–4.62 nm can be produced when controlling the resorcinol to catalyst (R/C) molar ratio between 100 and 500 and carbonization temperature in the range of 800–1000 °C. The resultant polymeric carbons were used as the electroactive material for the fabrication of electrodes for electrochemical cells. Contact angle measurements were performed to study the wettability of the electrodes using 6M KOH as the probing liquid. The contact angles were in the range of 106°–125° indicating the carbon based electrodes are hydrophobic in nature and no significant change in contact angles was observed with the change in R/C ratio. XRD patterns of the carbon electrodes show a typical broad peak at 2θ of about 23 indicating a disordered structure corresponding to the amorphous nature of the materials as expected for polymeric based hard carbons with crosslinked structure. These results are in line with Raman spectra of carbons which indicate two peaks in 1590 cm<sup>−1</sup> and 1340 cm<sup>−1</sup> wavenumber. The electrochemical performance of the electrodes was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The CV results showed that high specific capacitance of 136 Fg<sup>−1</sup> can be achieved for the carbon with average pore diameter of 1.80 nm at a scan rate of 5 mV s<sup>−1</sup> when using 6M KOH as the electrolyte. Electrochemical impedance (EIS) measurements also revealed that the capacitance of the cell deteriorates with increase in pore size of the carbon probably due to pore flooding by the electrolyte. The results of this study show the applicability of these carbons as potential electrode materials for supercapacitor applications.