People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bimbo, Nuno
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Electrodeposition of nickel–iron on stainless steel as an efficient electrocatalyst coating for the oxygen evolution reaction in alkaline conditionscitations
- 2021Kinetics and enthalpies of methane adsorption in microporous materials AX-21, MIL-101 (Cr) and TE7citations
- 2021Optimising the generation of hydrogen as a carbon-free fuel for the future, by development of new and unique catalytic coatings
- 2020Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocompositescitations
- 2020Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocompositescitations
- 2015Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperaturescitations
- 2015Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperaturescitations
- 2015High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressurescitations
- 2015High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressurescitations
- 2014Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressurescitations
- 2014Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressurescitations
- 2013Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in porescitations
- 2013Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in porescitations
- 2012Improving comparability of hydrogen storage capacities of nanoporous materialscitations
- 2011Analysis of hydrogen storage in nanoporous materials for low carbon energy applicationscitations
- 2011Analysis of hydrogen storage in nanoporous materials for low carbon energy applicationscitations
Places of action
Organizations | Location | People |
---|
article
Improving comparability of hydrogen storage capacities of nanoporous materials
Abstract
<p>We present results of investigations into improving methods by which gas sorption data are collected and reported. The focus is the accurate comparison of hydrogen storage capacities of different nanoporous materials. The aim is to produce a more rigorous approach to the assessment of the hydrogen storage capacities of different nanoporous materials through formulation of meticulous and systematic data collection routines for production of universally reproducible H <sub>2</sub> isotherms over a wide range of pressure and temperature conditions. Effects of a range of experimental variables are examined and recommendations for the optimisation of data collection routines are given.</p>