Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

García, Antonio Luis Tomás

  • Google
  • 3
  • 6
  • 98

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2014Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid27citations
  • 2014High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperaturescitations
  • 2011Corrosion behaviour of construction materials for high temperature steam electrolysers71citations

Places of action

Chart of shared publication
Li, Qingfeng
2 / 28 shared
Bjerrum, Niels Janniksen
3 / 25 shared
Jensen, Jens Oluf
2 / 25 shared
Nikiforov, Aleksey
1 / 10 shared
Petrushina, Irina
1 / 18 shared
Christensen, Erik
1 / 20 shared
Chart of publication period
2014
2011

Co-Authors (by relevance)

  • Li, Qingfeng
  • Bjerrum, Niels Janniksen
  • Jensen, Jens Oluf
  • Nikiforov, Aleksey
  • Petrushina, Irina
  • Christensen, Erik
OrganizationsLocationPeople

article

Corrosion behaviour of construction materials for high temperature steam electrolysers

  • García, Antonio Luis Tomás
  • Nikiforov, Aleksey
  • Petrushina, Irina
  • Bjerrum, Niels Janniksen
  • Christensen, Erik
Abstract

Different types of commercially available stainless steels, Ni-based alloys as well as titanium and tantalum were evaluated as possible metallic bipolar plates and construction materials. The corrosion resistance was measured under simulated conditions corresponding to the conditions in high temperature proton exchange membrane (PEM) steam electrolysers. Steady-state voltammetry was used in combination with scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis. Tantalum showed outstanding resistance to corrosion in selected media. On the contrary, passivation of titanium was weak, and the highest rate of corrosion among all tested materials was observed for titanium at 120 degrees C.

Topics
  • stainless steel
  • corrosion
  • scanning electron microscopy
  • titanium
  • Energy-dispersive X-ray spectroscopy
  • tantalum
  • voltammetry